2024 Volume 14 Issue 5
Article Contents

Nazek A. Obeidat, Mahmoud S. Rawashdeh, Malak Q. Al Erjani. A NEW EFFICIENT TRANSFORM MECHANISM WITH CONVERGENCE ANALYSIS OF THE SPACE-FRACTIONAL TELEGRAPH EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 3007-3032. doi: 10.11948/20240037
Citation: Nazek A. Obeidat, Mahmoud S. Rawashdeh, Malak Q. Al Erjani. A NEW EFFICIENT TRANSFORM MECHANISM WITH CONVERGENCE ANALYSIS OF THE SPACE-FRACTIONAL TELEGRAPH EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 3007-3032. doi: 10.11948/20240037

A NEW EFFICIENT TRANSFORM MECHANISM WITH CONVERGENCE ANALYSIS OF THE SPACE-FRACTIONAL TELEGRAPH EQUATIONS

  • This article's goal is to investigate the space-fractional telegraph equation using an effective method called the Adomian natural decomposition method (ANDM), which is a combination of the Adomian decomposition method (ADM) and the natural transform method (NTM). Using the Banach fixed point theorem, we explore proofs for the existence and uniqueness theorems applying it to a nonlinear differential equation. Using our method, exact solutions of the space-fractional telegraph equation and time-fractional diffusion problems have been obtained. To demonstrate the effectiveness of the suggested scheme, four examples are provided.

    MSC: 34A08, 65P99, 49J15, 35R11, 26A33, 74G10
  • 加载中
  • [1] S. Al-Shara, Fractional transformation method for constructing solitary wave solutions to some nonlinear fractional partial differential equations, Applied Mathematical Sciences, 2014, 8(116), 5751–5762.

    Google Scholar

    [2] O. Alsayyed, F. Awawdeh, S. Al-Shara' and E. Rawashdeh, High-order schemes for nonlinear fractional differential equations, Fractal and Fractional, 2022, 6(12), 748. doi: 10.3390/fractalfract6120748

    CrossRef Google Scholar

    [3] O. P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynamics, 2002, 29, 145–155. doi: 10.1023/A:1016539022492

    CrossRef Google Scholar

    [4] O. P. Agrawal, Response of a diffusion-wave system subjected to deterministic and stochastic fields, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, 2003, 83(4), 265–274.

    Google Scholar

    [5] F. B. M. Belgacem and R. Silambarasan, Theory of natural transform, Math. Engg. Sci. Aeros., 2012, 3, 99–124.

    Google Scholar

    [6] I. L. El-Kalla, Convergence of Adomian's method applied to a class of Volterra type integro-differential equations, International Journal of Differential Equations and Applications, 2005, 10(2), 225–234.

    Google Scholar

    [7] H. Eltayeb, Y. T. Abdalla, I. Bachar and M. H. Khabir, Fractional telegraph equation and its solution by natural transform decomposition method, Symmetry, 2019, 11(3), 334. doi: 10.3390/sym11030334

    CrossRef Google Scholar

    [8] Y. Fujita, Cauchy problems of fractional order and stable processes, Japan journal of applied mathematics, 1990, 7, 459–476.

    Google Scholar

    [9] Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka J. Math., 1990, 27, 309–321.

    Google Scholar

    [10] M. Garg and P. Manohar, Numerical solution of fractional diffusion-wave equation with two space variables by matrix method, Fractional Calculus and Applied Analysis, 2010, 13(2), 191–207.

    Google Scholar

    [11] M. Garg and A. Sharma, Solution of space-time fractional telegraph equation by Adomian decomposition method, Journal of Inequalities and Special Functions, 2011, 2(1), 1–7.

    Google Scholar

    [12] M. S. Hashmi, U. Aslam, J. Singh and K. S. Nisar, An efficient numerical scheme for fractional model of telegraph equation, Alexandria Engineering Journal, 2022, 61(8), 6383–6393. doi: 10.1016/j.aej.2021.11.065

    CrossRef Google Scholar

    [13] Z. Liu and S. Sun, Solvability and stability of multi-term fractional delay q-difference equation, Journal of Applied Analysis & Computation, 2024, 14(3), 1177–1197.

    Google Scholar

    [14] D. Loonker and P. K Banerji, Solution of fractional ordinary differential equations by natural transform, Int. J. Math. Eng. Sci., 2013, 12(2), 1–7.

    Google Scholar

    [15] Y. Luchko, Fractional wave equation and damped waves, Journal of Mathematical Physics, 2013, 54(3).

    Google Scholar

    [16] Y. Luchko, Wave–diffusion dualism of the neutral-fractional processes, Journal of Computational Physics, 2015, 293, 40–52. doi: 10.1016/j.jcp.2014.06.005

    CrossRef Google Scholar

    [17] Y. Luchko, F. Mainardi, Y. Povstenko, Propagation speed of the maximum of the fundamental solution to the fractional diffusion–wave equation, Computers & Mathematics with Applications, 2013, 66(5), 774–784.

    Google Scholar

    [18] S. M. Mabrouk, A. M. Wazwaz and A. S. Rashed, Monitoring dynamical behavior and optical solutions of space-time fractional order double-chain deoxyribonucleic acid model considering the Atangana's conformable derivative, Journal of Applied and Computational Mechanics, 2024.

    Google Scholar

    [19] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific, 2022.

    Google Scholar

    [20] R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics reports, 2000, 339(1), 1–77. doi: 10.1016/S0370-1573(00)00070-3

    CrossRef Google Scholar

    [21] G. M. Mittag-Leffler, Sur la nouvelle fonction ${\mathbb E}_{\alpha } \left( \rm x \right)$, CR Acad. Sci. Paris, 1903, 137(2), 554–558.

    ${\mathbb E}_{\alpha } \left(\rm x \right)$" target="_blank">Google Scholar

    [22] S. Momani, Analytic and approximate solutions of the space-and time-fractional telegraph equations, Applied Mathematics and Computation, 2005, 170(2), 1126–1134. doi: 10.1016/j.amc.2005.01.009

    CrossRef Google Scholar

    [23] N. A. Obeidat and D. E. Bentil, New theories and applications of tempered fractional differential equations, Nonlinear Dynamics, 2021, 105(2), 1689–1702. doi: 10.1007/s11071-021-06628-4

    CrossRef Google Scholar

    [24] N. A. Obeidat and D. E. Bentil, Novel technique to investigate the convergence analysis of the tempered fractional natural transform method applied to diffusion equations, Journal of Ocean Engineering and Science, 2023, 8(6), 636–646. doi: 10.1016/j.joes.2022.05.014

    CrossRef Google Scholar

    [25] E. Orsingher and X. Zhao, The space-fractional telegraph equation and the related fractional telegraph process, Chinese Annals of Mathematics, 2003, 24(1), 45–56. doi: 10.1142/S0252959903000050

    CrossRef Google Scholar

    [26] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications, Elsevier, 1998.

    Google Scholar

    [27] A. Prakash, Analytical method for space-fractional telegraph equation by homotopy perturbation transform method, Nonlinear Engineering, 2016, 5(2), 123–128.

    Google Scholar

    [28] M. S. Rawashdeh, The fractional natural decomposition method: Theories and applications, Mathematical Methods in the Applied Sciences, 2017, 40(7), 2362–2376. doi: 10.1002/mma.4144

    CrossRef Google Scholar

    [29] M. S. Rawashdeh and H. Al-Jammal, New approximate solutions to fractional nonlinear systems of partial differential equations using the FNDM, Advances in Difference Equations, 2016, 1, 1–19. DOI: 10.1186/s13662-016-0960-2012-1.

    CrossRef Google Scholar

    [30] M. S. Rawashdeh, N. A. Obeidat and H. S. Abedalqader, New class of nonlinear fractional integro-differential equations with theoretical analysis via fixed point approach: Numerical and exact solutions, Journal of Applied Analysis and Computation, 2023, 13(5), 2767–2787.

    Google Scholar

    [31] W. R. Schneider and W. Wyss, Fractional diffusion and wave equations, Journal of Mathematical Physics, 1989, 30(1), 134–144. doi: 10.1063/1.528578

    CrossRef Google Scholar

    [32] L. B. Shen and B. S. Han, Propagating terrace in a periodic reaction-diffusion equation with convection, Journal of Applied Analysis & Computation, 2024, 14(3), 1395–1413.

    Google Scholar

Figures(12)  /  Tables(4)

Article Metrics

Article views(964) PDF downloads(275) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint