Citation: | Aissa Guesmia, Salim A. Messaoudi, Mostafa Zahri. GENERAL DECAY OF SOLUTIONS OF A WEAKLY COUPLED ABSTRACT EVOLUTION EQUATIONS WITH ONE FINITE MEMORY CONTROL[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3539-3557. doi: 10.11948/20240081 |
In this work, we consider the following abstract evolution system:
$ \begin{equation*} \left\{ \begin{array}{ll} u_{tt}(t)+Au(t)- \int_{0}^{t}g(t-s)A^{\theta }u(s)ds+\alpha v(t)=0, & t>0, \\ v_{tt}(t)+Av(t)+\alpha u(t)=0, & t>0, \\ u(0)=u_{0},\text{ }u_{t}(0)=u_{1},\text{ }v(0)=v_{0},\text{ }v_{t}(0)=v_{1},& \end{array} \right. \end{equation*} $
where $ A:\mathcal{D}(A)\subset H\longrightarrow H $ is a linear positive definite self-adjoint operator, $ H $ is a Hilbert space, $ g $ is a positive non-increasing function with some general decay rate, $ \theta\in \lbrack 0,1] $, $ \alpha $ is a positive constant and $ u_0 ,u_1 ,v_0 $ and $ v_1 $ are fixed initial data. Under appropriate conditions on $ g,\,\alpha $ and the regularity of the initial data, we establish a general decay rate of the solution energy which generalizes some earlier results in the literature. We, also, illustrated our results by performing several numerical tests.
[1] | M. Aassila, A note on the boundary stabilization of a compactly coupled system of wave equations, Appl. Math. Lett., 1999, 12, 19–24. |
[2] | M. Aassila, Strong asymptotic stability of a compactly coupled system of wave equations, Appl. Math. Lett., 2001, 14, 285–290. doi: 10.1016/S0893-9659(00)00150-6 |
[3] | M. Akil, H. Badawi, S. Nicaise and A. Wehbe, Stability results of coupled wave models with locally memory in a past history framework via nonsmooth coefficients on the interface, Math. Meth. Appl. Sci., 2021, 44, 6950–6981. doi: 10.1002/mma.7235 |
[4] | F. Alabau, P. Cannarsa and V. Komornik, Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equa., 2002, 2, 127–150. doi: 10.1007/s00028-002-8083-0 |
[5] | R. G. C. Almeida and M. L. Santos, Lack of exponential decay of a coupled system of wave equations with memory, Nonlinear Analysis: Real World Applications, 2011, 12, 1023–1032. doi: 10.1016/j.nonrwa.2010.08.025 |
[6] | S. Boulaaras, R. Guefaia and N. Mezouar, Global existence and decay for a system of two singular one-dimensional nonlinear viscoelastic equations with general source terms, Appl. Anal., 2022, 101(3), 824–848. doi: 10.1080/00036811.2020.1760250 |
[7] | M. M. Cavalcanti, V. N. Domingos Cavalcanti and A. Guesmia, Weak stability for coupled wave and/or Petrovsky systems with complementary frictional damping and infinite memory, J. Diff. Equa., 2015, 259, 7540–7577. doi: 10.1016/j.jde.2015.08.028 |
[8] | S. M. S. Cordeiro, R. F. C. Lobato and C. A. Raposo, Optimal polynomial decay for a coupled system of wave with past history, Open J. Math. Anal., 2020, 4(1), 49–59. doi: 10.30538/psrp-oma2020.0052 |
[9] | A. Draia, A. Zarai and S. Boulaaras, Global existence and decay of solutions of a singular nonlocal viscoelastic system, Rend. Circ. Mat. Palermo. Series 2, 2018, 1–25. |
[10] | B. Feng, S. A. Messaoudi, A. Soufyane and M. Zahri, Optimal memory-type boundary control of the Bresse system, Asymptotic Analysis, 2022, 1–32. |
[11] | A. Guesmia, Asymptotic behavior for coupled abstract evolution equations with one infinite memory, Applicable Analysis, 2015, 94, 184–217. doi: 10.1080/00036811.2014.890708 |
[12] | K. L. Jin, J. Liang and T. J. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Diff. Equa., 2014, 257(5), 1501–1528. doi: 10.1016/j.jde.2014.05.018 |
[13] | K. L. Jin, J. Liang and T. J. Xiao, Asymptotic behavior for coupled systems of second order abstract evolution equations with one infinite memory, J. Math. Anal. Appl., 2019, 475(1), 554–575. doi: 10.1016/j.jmaa.2019.02.055 |
[14] | V. Komornik and R. Bopeng, Boundary stabilization of compactly coupled wave equations, Asymptotic Analysis, 1997, 14, 339–359. doi: 10.3233/ASY-1997-14403 |
[15] | I. Lacheheb, S. A. Messaoudi and M. Zahri, Asymptotic stability of porous-elastic system with thermoelasticity of type Ⅲ, Arab. J. Math., 2021, 10, 137–155. doi: 10.1007/s40065-020-00305-x |
[16] | R. F. C. Lobato, S. M. C. Cordeiro, M. L. Santos and D. S. Almeida Junior, Optimal polynomial decay to coupled wave equations and its numerical properties, J. Appl. Math., 2014, Art. ID 897080. |
[17] | L. P. V. Matos, D. S. A. Junior and M. L. Santos, Polynomial decay to a class of abstract coupled systems with past history, Diff. Inte. Equa., 2012, 25, 1119–1134. |
[18] | S. A. Messaoudi and W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Appl. Math. Lett., 2017, 66, 16–22. DOI: 10.1016/j.aml.2016.11.002. |
[19] | S. A. Messaoudi and M. Zahri, Analytical and computational results for the decay of solutions of a damped wave equation with variable-exponent nonlinearities, Topological Methods in Nonlinear Analysis, 2022, 59(2B), 851–866. |
[20] | J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory, J. Math. Anal. Appl., 2007, 691–707. |
[21] | J. E. Muñoz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 2003, 286(2), 692–704. DOI: 10.1016/S0022-247X(03)00511-0. |
[22] | M. Najafi, Study of exponential stability of coupled wave systems via distributed stabilizer, International Journal of Mathematics and Mathematical Sciences, 2001, 28, 479–491. doi: 10.1155/S0161171201003829 |
[23] | R. L. Oliveira, H. P. Oquendo and C. Buriol, Exact decay rates for weakly coupled systems with indirect damping by fractional memory effects, Math. Nachr., 2023. DOI: 10.1002/mana.202100460. |
Damping behavior of the waves
Damping behavior of the waves
Energy functions for Tests 1. and 2.
Damping behavior of the waves
Damping behavior of the waves
Energy functions for Tests 3. and 4.
Damping behavior of the waves
Damping behavior of the waves
Energy functions for Tests 5. and 6.