2025 Volume 15 Issue 4
Article Contents

Parisa Rahimkhani, Salameh Sedaghat. ALTERNATIVE WAVELETS FOR THE SOLUTION OF VARIABLE-ORDER FRACTAL-FRACTIONAL DIFFERENTIAL EQUATIONS SYSTEM WITH POWER AND MITTAG-LEFFLER KERNELS[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 1830-1861. doi: 10.11948/20240117
Citation: Parisa Rahimkhani, Salameh Sedaghat. ALTERNATIVE WAVELETS FOR THE SOLUTION OF VARIABLE-ORDER FRACTAL-FRACTIONAL DIFFERENTIAL EQUATIONS SYSTEM WITH POWER AND MITTAG-LEFFLER KERNELS[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 1830-1861. doi: 10.11948/20240117

ALTERNATIVE WAVELETS FOR THE SOLUTION OF VARIABLE-ORDER FRACTAL-FRACTIONAL DIFFERENTIAL EQUATIONS SYSTEM WITH POWER AND MITTAG-LEFFLER KERNELS

  • In this paper, a procedure based on the fractional-order alternative Legendre wavelets (FALWs) is introduced for solving variable-order fractalfractional differential equations (VFFDEs) system with power and MittagLeffler kernels. An analytic formula is obtained for computing the variableorder fractal-fractional integral operator of the FALWs by employing the regularized beta functions. The presented method converts solving the primary problem to solving a system of nonlinear algebraic equations. To do this, the variable-order fractal-fractional (VFF) derivative of the unknown function is expanded in terms of the FALWs with unknown coefficients at first. Then, by employing the properties of the VFF derivative and integral, together with the collocation method, a system of algebraic equations is obtained, that can be easily solved by the Newton's iterative scheme. An error upper bound for the numerical solution in the Sobolev space is obtained. Finally, different chaotic oscillators of variable-order are solved in order to illustrate the accuracy and validity of the suggested strategy.

    MSC: 28A80, 65L60, 65T60
  • 加载中
  • [1] R. Almeida, A. B. Malinowska and M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Method. Appl. Sci., 2018, 41, 336–352. doi: 10.1002/mma.4617

    CrossRef Google Scholar

    [2] M. Alqhtani and K. M. Saad, Fractal-fractional Michaelis-Menten enzymatic reaction model via different kernels, Fractal and Fractional, 2022, 6, 13.

    Google Scholar

    [3] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons and Fractals, 2017, 102, 396–406. doi: 10.1016/j.chaos.2017.04.027

    CrossRef Google Scholar

    [4] A. Atangana and S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal-fractional operators, Chaos Solitons and Fractals, 2019, 123, 320–337. doi: 10.1016/j.chaos.2019.04.020

    CrossRef Google Scholar

    [5] R. L. Bagley and P. J. Torvik, Fractional calculus in the transient analysis of viscoelastically damped structures, AIAA J., 1985, 23, 918–925. doi: 10.2514/3.9007

    CrossRef Google Scholar

    [6] Q. H. Do, H. T. B. Ngo and M. Razzaghi, A generalized fractional-order Chebyshev wavelet method for two-dimensional distributed-order fractional differential equations, Communications in Nonlinear Science and Numerical Simulation, 2021, 95, 105597. doi: 10.1016/j.cnsns.2020.105597

    CrossRef Google Scholar

    [7] N. Engheta, On fractional calculus and fractional multipoles in electromagnetism, Antennas Propag., 1996, 44, 554–566. doi: 10.1109/8.489308

    CrossRef Google Scholar

    [8] M. H. Heydari, Numerical solution of nonlinear 2D optimal control problems generated by Atangana-Riemann-Liouville fractal-fractional derivative, Applied Numerical Mathematics, 2020, 150, 507–518. doi: 10.1016/j.apnum.2019.10.020

    CrossRef Google Scholar

    [9] M. H. Heydari, A. Atangana and Z. Avazzadeh, Numerical solution of nonlinear fractal-fractional optimal control problems by Legendre polynomials, Math. Methods Appl. Sci., 2021, 44(4), 2952–2963. doi: 10.1002/mma.6326

    CrossRef Google Scholar

    [10] M. H. Heydari, A. Atangana, Z. Avazzadeh and Y. Yang, Numerical treatment of the strongly coupled nonlinear fractal-fractional Schr$\ddot{o}$dinger equations through the shifted Chebyshev cardinal functions, Math. Meth. Appl. Sci., 2020, 59(4), 2037–2052.

    Google Scholar

    [11] M. H. Heydari, Z. Avazzadeh and A. Atangana, Shifted Vieta-Fibonacci polynomials for the fractal-fractional fifth-order KdV equation, Math. Meth. Appl. Sci., 2021, 44, 6716–6730. doi: 10.1002/mma.7219

    CrossRef Google Scholar

    [12] E. Keshavarz, Y. Ordokhani and M. Razzaghi, The Taylor wavelets method for solving the initial and boundary value problems of Bratu-type equations, Appl. Numer. Math., 2018, 128, 205–216. doi: 10.1016/j.apnum.2018.02.001

    CrossRef Google Scholar

    [13] V. V. Kulish and J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng., 2002, 124(3), 803–806. doi: 10.1115/1.1478062

    CrossRef Google Scholar

    [14] C. Lederman, J. M. Roquejoffre and N. Wolanski, Mathematical justification of a nonlinear integro–differential equation for the propagation of spherical flames, Annali di Matematica, 2004, 183, 173–239. doi: 10.1007/s10231-003-0085-1

    CrossRef Google Scholar

    [15] F. C. Meral, T. J. Royston and R. Magin, Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci. Numer. Simul., 2010, 15, 939–945. doi: 10.1016/j.cnsns.2009.05.004

    CrossRef Google Scholar

    [16] S. Nemati, P. M. Lima and S. Sedaghat, Legendre wavelet collocation method combined with the Gauss-Jacobi quadrature for solving fractional delay-type integro-differential equations, Appl. Numer. Math., 2020, 149, 99–112. doi: 10.1016/j.apnum.2019.05.024

    CrossRef Google Scholar

    [17] N. T. B. Ngo, T. N. Vo and M. Razzaghi, An effective method for solving nonlinear fractional differential equations, Engineering with Computers, 2022, 38, 207–218. doi: 10.1007/s00366-020-01143-3

    CrossRef Google Scholar

    [18] K. M. Owolabi, A. Atangana A and A. Akgul, Modelling and analysis of fractal-fractional partial differential equations: Application to reaction-diffusion model, Alex. Eng. J., 2020, 1, 1–17.

    Google Scholar

    [19] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    Google Scholar

    [20] P. Rahimkhani, Numerical solution of nonlinear stochastic differential equations with fractional Brownian motion using fractional-order Genocchi deep neural networks, Communications in Nonlinear Science and Numerical Simulation, 2023, 126, 107466. doi: 10.1016/j.cnsns.2023.107466

    CrossRef Google Scholar

    [21] P. Rahimkhani and M. H. Heydari, Fractional shifted Morgan-Voyce neural networks for solving fractal-fractional pantograph differential equations, Chaos, Solitons and Fractals, 2023, 175, 114070. doi: 10.1016/j.chaos.2023.114070

    CrossRef Google Scholar

    [22] P. Rahimkhani and Y. Ordokhani, The bivariate Muntz wavelets composite collocation method for solving space-time fractional partial differential equations, Comput. Appl. Math., 2020, 39, 115. doi: 10.1007/s40314-020-01141-7

    CrossRef Google Scholar

    [23] P. Rahimkhani and Y. Ordokhani, Hahn wavelets collocation method combined with Laplace transform method for solving fractional integro-differential equations, Mathematical Sciences, 2023. DOI: 10.1007/s40096-023-00514-3.

    CrossRef Google Scholar

    [24] P. Rahimkhani and Y. Ordokhani, Numerical investigation of distributed-order fractional optimal control problems via Bernstein wavelets, Opt. Control Appl. Methods., 2021, 42(1), 355–373. doi: 10.1002/oca.2679

    CrossRef Google Scholar

    [25] P. Rahimkhani and Y. Ordokhani, Approximate solution of nonlinear fractional integro-differential equations using fractional alternative Legendre functions, Journal of Computational and Applied Mathematics, 2020, 365, 112365. doi: 10.1016/j.cam.2019.112365

    CrossRef Google Scholar

    [26] P. Rahimkhani and Y. Ordokhani, A modified numerical method based on Bernstein wavelets for numerical assessment of fractional variational and optimal control problems, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2022. DOI: 10.1007/s40998-022-00522-4.

    CrossRef Google Scholar

    [27] P. Rahimkhani, Y. Ordokhani and P. M. Lima, An improved composite collocation method for distributed-order fractional differential equations based on fractional Chelyshkov wavelets, Appl. Numer. Math., 2019, 145, 1–27. doi: 10.1016/j.apnum.2019.05.023

    CrossRef Google Scholar

    [28] P. Rahimkhani, Y. Ordokhani and S. Sabermahani, Bernoulli wavelet least square support vector regression: Robust numerical method for a system of fractional differential equations, Mathematical Methods in the Applied Sciences, 2023. DOI: 10.1002/mma.9522.

    CrossRef Google Scholar

    [29] P. Rahimkhani, Y. Ordokhani and S. Sedaghat, The numerical treatment of fractal-fractional 2D optimal control problems by Mü ntz-Legendre polynomials, Optimal Control, Applications and Methods, 2023. DOI: 10.1002/oca.3024.

    CrossRef Google Scholar

    [30] S. Sabermahani, Y. Ordokhani and P. Rahimkhani, Touchard-Ritz method to solve variable-order fractional optimal control problems, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2024, 48, 1189–1198. doi: 10.1007/s40998-024-00735-9

    CrossRef Google Scholar

    [31] S. Sabermahani, Y. Ordokhani and P. Rahimkhani, Application of generalized Lucas wavelet method for solving nonlinear fractal-fractional optimal control problems, Chaos Solitons Fractals, 2023, 170, 113348. doi: 10.1016/j.chaos.2023.113348

    CrossRef Google Scholar

    [32] S. Sabermahani, Y. Ordokhani and S. A. Yousefi, Fractional-order general Lagrange scaling functions and their applications, BIT Numer. Math., 2019, 60, 101–128. doi: 10.1007/s10543-019-00769-0

    CrossRef Google Scholar

    [33] S. Sedaghat and S. Mashayekhi, Exploiting delay differential equations solved by Eta functions as suitable mathematical tools for the investigation of thickness controlling in rolling mill, Chaos, Solitons and Fractals, 2022, 164, 112666. doi: 10.1016/j.chaos.2022.112666

    CrossRef Google Scholar

    [34] J. E. Solis–Perez and J. F. Gomez–Aguilar, Variable order fractal–fractional time delay equations with power, exponential and Mittag–Leffler laws and their numerical solutions, Engineering with Computers, 2022, 38, 555–577. doi: 10.1007/s00366-020-01065-0

    CrossRef Google Scholar

    [35] H. M. Srivastava and K. M. Saad, Numerical simulation of the fractal-fractional Ebola virus, Fractal Fract., 2020, 4(4), 49. doi: 10.3390/fractalfract4040049

    CrossRef Google Scholar

    [36] M. H. Srivastava, K. M. Saad and W. M. Hamanah, Certain new models of the multi-space fractal-fractional Kuramoto-Sivashinsky and Korteweg-de Vries equations, Mathematics, Mathematics, 2022, 10(7), 1089.

    Google Scholar

    [37] P. T. Toan, T. N. Vo and M. Razzaghi, Taylor wavelet method for fractional delay differential equations, Eng. Comput., 2019, 1–10.

    Google Scholar

    [38] W. Wang and M. A. Khan, Analysis and numerical simulation of fractional model of bank data with fractal-fractional Atangana-Baleanu derivative, Journal of Computational and Applied Mathematics, 2020, 369, 112646.

    Google Scholar

    [39] C. J. Zuniga–Aguilar, J. F. Gomez–Aguilar, H. M. Romero–Ugalde, R. F. Escobar–Jimenez, G. FernndezAnaya and F. E. Alsaadi, Numerical solution of fractal-fractional Mittag–Leffler differential equations with variable-order using artificial neural networks, Engineering with Computers, 2022, 38, 2669–2682.

    Google Scholar

Figures(12)  /  Tables(10)

Article Metrics

Article views(638) PDF downloads(414) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint