2025 Volume 15 Issue 1
Article Contents

Jianjun Jin. ON THE OPERATORS OF HARDY-LITTLEWOOD-PÓLYA TYPE[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 470-487. doi: 10.11948/20240123
Citation: Jianjun Jin. ON THE OPERATORS OF HARDY-LITTLEWOOD-PÓLYA TYPE[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 470-487. doi: 10.11948/20240123

ON THE OPERATORS OF HARDY-LITTLEWOOD-PÓLYA TYPE

  • In this paper several new Hardy-Littlewood-Pólya-type operators are introduced and studied. In particular, we study a Hardy-Littlewood-Pólya-type operator induced by a positive Borel measure on $ [0,1) $. We establish some sufficient and necessary conditions for the boundedness (compactness) of these operators. We also determine the exact values of the norms of the Hardy-Littlewood-Pólya-type operators for certain special cases.

    MSC: 47B37, 26D15, 47A30
  • 加载中
  • [1] G. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.

    Google Scholar

    [2] V. Božin and B. Karapetrović, Norm of the Hilbert matrix on Bergman spaces, J. Funct. Anal., 2018, 274(2), 525–543. doi: 10.1016/j.jfa.2017.08.005

    CrossRef Google Scholar

    [3] O. Brevig, Sharp norm estimates for composition operators and Hilbert-type inequalities, Bull. Lond. Math. Soc., 2017, 49, 965–978. doi: 10.1112/blms.12092

    CrossRef Google Scholar

    [4] O. Brevig, The best constant in a Hilbert-type inequality, Expo. Math., 2024, 42(1), Paper No. 125530, 11 pp.

    Google Scholar

    [5] E. Diamantopoulos, Operators induced by Hankel matrices on Dirichlet spaces, Analysis (Munich), 2004, 24(4), 345–360.

    Google Scholar

    [6] E. Diamantopoulos, Hilbert matrix on Bergman spaces, Illinois J. Math., 2004, 48(3), 1067–1078.

    Google Scholar

    [7] E. Diamantopoulos and A. Siskakis, Composition operators and the Hilbert matrix, Studia Math., 2000, 140(2), 191–198. doi: 10.4064/sm-140-2-191-198

    CrossRef Google Scholar

    [8] M. Dostanić, M. Jevtić and D. Vukotić, Norm of the Hilbert matrix on Bergman and Hardy spaces and a theorem of Nehari type, J. Funct. Anal., 2008, 254(11), 2800–2815. doi: 10.1016/j.jfa.2008.02.009

    CrossRef Google Scholar

    [9] Z. Fu, Q. Wu and S. Lu, Sharp estimates for $p$-adic Hardy, Hardy- Littlewood- Pólya operators and commutators, Acta Math. Sin., 2013, 29, 137–150. doi: 10.1007/s10114-012-0695-x

    CrossRef Google Scholar

    [10] P. Galanopoulos, D. Girela, J. Peláez and A. Siskakis, Generalized Hilbert operators, Ann. Acad. Sci. Fenn. Math., 2014, 39(1), 231–258.

    Google Scholar

    [11] P. Galanopoulos and J. Peláez, A Hankel matrix acting on Hardy and Bergman spaces, Studia Math., 2010, 200, 201–220. doi: 10.4064/sm200-3-1

    CrossRef Google Scholar

    [12] D. Girela and N. Merchán, Hankel matrices acting on the Hardy space H1 and on Dirichlet spaces, Rev. Mat. Complut., 2019, 32, 799–822. doi: 10.1007/s13163-018-0288-z

    CrossRef Google Scholar

    [13] G. Hardy, J. Littlewood and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1952.

    Google Scholar

    [14] B. Karapetrović, Hilbert matrix and its norm on weighted Bergman spaces, J. Geom. Anal., 2021, 31(6), 5909–5940. doi: 10.1007/s12220-020-00509-9

    CrossRef Google Scholar

    [15] M. Lindström, S. Miihkinen and N. Wikman, On the exact value of the norm of the Hilbert matrix operator on the weighted Bergman spaces, Ann. Fenn. Math., 2021, 46, 201–224. doi: 10.5186/aasfm.2021.4615

    CrossRef Google Scholar

    [16] M. Lindström, S. Miihkinen and D. Norrbo, Exact essential norm of generalized Hilbert matrix operators on classical analytic function spaces, Adv. Math., 2022, 408, Paper No. 108598, 34 pp.

    Google Scholar

    [17] D. Mitrinović, Analytic Inequalities, Springer-Verlag, New York-Berlin, 1970.

    Google Scholar

    [18] M. Pavlović, Introduction to Function Spaces on the Disk, Matematički Institut SANU, Belgrade, 2004.

    Google Scholar

    [19] J. Peláez and J. Rättyä, Generalized Hilbert operators on weighted Bergman spaces, Adv. Math., 2013, 240, 227–267. doi: 10.1016/j.aim.2013.03.006

    CrossRef Google Scholar

    [20] F. Wu, Y. Hong and B. Yang, A refined Hardy-Littlewood-Polya inequality and the equivalent forms, J. Math. Inequal., 2022, 16(4), 1477–1491.

    Google Scholar

    [21] B. Yang, The Norm of Operator and Hibert-Type Inequalities (in Chinese), Science Press, 2009.

    Google Scholar

    [22] B. Yang and T. Rassias, On the way of weight coefficient and research for the Hilbert-type inequalities, Math. Inequal. Appl., 2003, 6, 625–658.

    Google Scholar

    [23] B. Yang and Y. Zhong, On a reverse Hardy-Littlewood-Pólya's inequality, J. Appl. Anal. Comput., 2020, 10(5), 2220–2232.

    Google Scholar

    [24] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.

    Google Scholar

Article Metrics

Article views(630) PDF downloads(219) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint