Citation: | Ying Yuan, Haiyan Xu, Zhigui Lin. EXTINCTION AND PERSISTENCE IN A LOGISTIC MODEL WITH BIRTH AND HARVESTING IMPULSES[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 488-501. doi: 10.11948/20240131 |
This paper deals with a diffusive logistic model with birth and harvesting impulses, where birth pulses are for increase of population in short time because of birth, and harvesting pulses are used to describe decrease of population by regular harvesting or interventions. Firstly, the principal eigenvalue depending the impulsive rates, which is regarded as a threshold value, is introduced and characterized. Secondly, the asymptotic behavior of population is fully investigated and the sufficient conditions for the solution to be extinct or persist are given. Our results show that the increase brought about by birth, the decrease caused by harvest, and the intervention timing all have an impact on the persistence of species.
[1] | I. Anton and J. Lómez-Gómez, Principal eigenvalues of weighted periodic-parabolic problems, Rend. Istit. Mat. Univ. Trieste, 2017, 49, 287–318. |
[2] | Z. G. Bai and X. Q. Zhao, Basic reproduction ratios for periodic and time-delayed compartmental models with impulses, J. Math. Biol., 2020, 80(4), 1095–1117. doi: 10.1007/s00285-019-01452-2 |
[3] | D. Daners and J. Lómez-Gómez, Global dynamics of generalized logistic equations, Adv. Nonlinear Stud., 2018, 18, 217–236. doi: 10.1515/ans-2018-0008 |
[4] | Y. H. Du and R. Peng, The periodic logistic equation with spatial and temporal degeneracies, Trans. Amer. Math. Soc., 2012, 364(11), 6039–6070. doi: 10.1090/S0002-9947-2012-05590-5 |
[5] | P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes in Mathematics, $247$, Longman Sci. Tech. Harlow, UK, 1991. |
[6] | T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966. |
[7] | M. G. Krein and M. A. Rutman, Linear Operators Leaving Invariant a Cone in a Banach Space, American Mathematical Society, New York, 1950. |
[8] | M. A. Lewis and B. T. Li, Spreading speed, traveling waves, and minimal domain size in impulsive reaction-diffusion models, Bull. Math. Biol., 2012, 74, 2383–2402. doi: 10.1007/s11538-012-9757-6 |
[9] | F. X. Li and X. Q. Zhao, Global dynamics of a reaction-diffusion model of Zika virus transmission with seasonality, Bull. Math. Biol., 2012, 83(5), 1–25. |
[10] | J. H. Liang, Q. Yan, C. C. Xiang, et al., A reaction-diffusion population growth equation with multiple pulse perturbations, Commun. Nonlinear Sci. Numer. Simul., 2019, 74, 122–137. doi: 10.1016/j.cnsns.2019.02.015 |
[11] | X. Liang, L. Zhang and X. Q. Zhao, The principal eigenvalue for degenerate periodic reaction-diffusion systems, SIAM J. Math. Anal., 2017, 49(5), 3603–3636. doi: 10.1137/16M1108832 |
[12] | G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co. Inc., River Edge, NJ, 1996. |
[13] | Z. J. Liu, S. M. Zhong, C. Yin, et al., Dynamics of impulsive reaction-diffusion predator-prey system with Holling Ⅲ type functional response, Appl. Math. Modelling, 2011, 35(12), 5564–5578. doi: 10.1016/j.apm.2011.05.019 |
[14] | J. López-Gómez, Protection zones in periodic-parabolic problems, Adv. Nonlinear Stud., 2020, 20, 253–276. doi: 10.1515/ans-2020-2084 |
[15] | Y. Meng, J. Ge and Z. G. Lin, Dynamics of a free boundary problem modelling species invasion with impulsive harvesting, Discrete Contin. Dyn. Syst. Ser. B, 2022, 27(12), 7689–7720. doi: 10.3934/dcdsb.2022060 |
[16] | Y. Meng, Z. Lin and M. Pedersen, Effects of impulsive harvesting and an evolving domain in a diffusive logistic model, Nonlinearity, 2021, 34, 7005–7029. doi: 10.1088/1361-6544/ac1f78 |
[17] | A. Okubo and S. Levin, Diffusion and Ecological Problems, Springer, New York, 2001. |
[18] | M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, New York, 1985. |
[19] | J. W. Sun, Asymptotic profiles for positive solutions in periodic-parabolic problem, J. Dyn. Diff. Equat., 2022. DOI: 10.1007/s10884-022-10206-6. |
[20] | R. Wu and X. Zhao, Spatial invasion of a birth pulse population with nonlocal dispersal, SIAM. J. Appl. Math., 2019, 79(3), 1075–1097. doi: 10.1137/18M1209805 |
[21] | H. Y. Xu, Z. G. Lin and C. A. Santos, Spatial dynamics of a juvenile-adult model with impulsive harvesting and evolving domain, Commun. Nonlinear Sci. Numer. Simul., 2023, 122, 107262. doi: 10.1016/j.cnsns.2023.107262 |