2025 Volume 15 Issue 1
Article Contents

Ying Yuan, Haiyan Xu, Zhigui Lin. EXTINCTION AND PERSISTENCE IN A LOGISTIC MODEL WITH BIRTH AND HARVESTING IMPULSES[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 488-501. doi: 10.11948/20240131
Citation: Ying Yuan, Haiyan Xu, Zhigui Lin. EXTINCTION AND PERSISTENCE IN A LOGISTIC MODEL WITH BIRTH AND HARVESTING IMPULSES[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 488-501. doi: 10.11948/20240131

EXTINCTION AND PERSISTENCE IN A LOGISTIC MODEL WITH BIRTH AND HARVESTING IMPULSES

  • This paper deals with a diffusive logistic model with birth and harvesting impulses, where birth pulses are for increase of population in short time because of birth, and harvesting pulses are used to describe decrease of population by regular harvesting or interventions. Firstly, the principal eigenvalue depending the impulsive rates, which is regarded as a threshold value, is introduced and characterized. Secondly, the asymptotic behavior of population is fully investigated and the sufficient conditions for the solution to be extinct or persist are given. Our results show that the increase brought about by birth, the decrease caused by harvest, and the intervention timing all have an impact on the persistence of species.

    MSC: 35K57, 35R35, 92D25
  • 加载中
  • [1] I. Anton and J. Lómez-Gómez, Principal eigenvalues of weighted periodic-parabolic problems, Rend. Istit. Mat. Univ. Trieste, 2017, 49, 287–318.

    Google Scholar

    [2] Z. G. Bai and X. Q. Zhao, Basic reproduction ratios for periodic and time-delayed compartmental models with impulses, J. Math. Biol., 2020, 80(4), 1095–1117. doi: 10.1007/s00285-019-01452-2

    CrossRef Google Scholar

    [3] D. Daners and J. Lómez-Gómez, Global dynamics of generalized logistic equations, Adv. Nonlinear Stud., 2018, 18, 217–236. doi: 10.1515/ans-2018-0008

    CrossRef Google Scholar

    [4] Y. H. Du and R. Peng, The periodic logistic equation with spatial and temporal degeneracies, Trans. Amer. Math. Soc., 2012, 364(11), 6039–6070. doi: 10.1090/S0002-9947-2012-05590-5

    CrossRef Google Scholar

    [5] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes in Mathematics, $247$, Longman Sci. Tech. Harlow, UK, 1991.

    Google Scholar

    [6] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.

    Google Scholar

    [7] M. G. Krein and M. A. Rutman, Linear Operators Leaving Invariant a Cone in a Banach Space, American Mathematical Society, New York, 1950.

    Google Scholar

    [8] M. A. Lewis and B. T. Li, Spreading speed, traveling waves, and minimal domain size in impulsive reaction-diffusion models, Bull. Math. Biol., 2012, 74, 2383–2402. doi: 10.1007/s11538-012-9757-6

    CrossRef Google Scholar

    [9] F. X. Li and X. Q. Zhao, Global dynamics of a reaction-diffusion model of Zika virus transmission with seasonality, Bull. Math. Biol., 2012, 83(5), 1–25.

    Google Scholar

    [10] J. H. Liang, Q. Yan, C. C. Xiang, et al., A reaction-diffusion population growth equation with multiple pulse perturbations, Commun. Nonlinear Sci. Numer. Simul., 2019, 74, 122–137. doi: 10.1016/j.cnsns.2019.02.015

    CrossRef Google Scholar

    [11] X. Liang, L. Zhang and X. Q. Zhao, The principal eigenvalue for degenerate periodic reaction-diffusion systems, SIAM J. Math. Anal., 2017, 49(5), 3603–3636. doi: 10.1137/16M1108832

    CrossRef Google Scholar

    [12] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co. Inc., River Edge, NJ, 1996.

    Google Scholar

    [13] Z. J. Liu, S. M. Zhong, C. Yin, et al., Dynamics of impulsive reaction-diffusion predator-prey system with Holling Ⅲ type functional response, Appl. Math. Modelling, 2011, 35(12), 5564–5578. doi: 10.1016/j.apm.2011.05.019

    CrossRef Google Scholar

    [14] J. López-Gómez, Protection zones in periodic-parabolic problems, Adv. Nonlinear Stud., 2020, 20, 253–276. doi: 10.1515/ans-2020-2084

    CrossRef Google Scholar

    [15] Y. Meng, J. Ge and Z. G. Lin, Dynamics of a free boundary problem modelling species invasion with impulsive harvesting, Discrete Contin. Dyn. Syst. Ser. B, 2022, 27(12), 7689–7720. doi: 10.3934/dcdsb.2022060

    CrossRef Google Scholar

    [16] Y. Meng, Z. Lin and M. Pedersen, Effects of impulsive harvesting and an evolving domain in a diffusive logistic model, Nonlinearity, 2021, 34, 7005–7029. doi: 10.1088/1361-6544/ac1f78

    CrossRef Google Scholar

    [17] A. Okubo and S. Levin, Diffusion and Ecological Problems, Springer, New York, 2001.

    Google Scholar

    [18] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, New York, 1985.

    Google Scholar

    [19] J. W. Sun, Asymptotic profiles for positive solutions in periodic-parabolic problem, J. Dyn. Diff. Equat., 2022. DOI: 10.1007/s10884-022-10206-6.

    CrossRef Google Scholar

    [20] R. Wu and X. Zhao, Spatial invasion of a birth pulse population with nonlocal dispersal, SIAM. J. Appl. Math., 2019, 79(3), 1075–1097. doi: 10.1137/18M1209805

    CrossRef Google Scholar

    [21] H. Y. Xu, Z. G. Lin and C. A. Santos, Spatial dynamics of a juvenile-adult model with impulsive harvesting and evolving domain, Commun. Nonlinear Sci. Numer. Simul., 2023, 122, 107262. doi: 10.1016/j.cnsns.2023.107262

    CrossRef Google Scholar

Article Metrics

Article views(551) PDF downloads(196) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint