2025 Volume 15 Issue 1
Article Contents

Panpan Wang, Xiufang Feng, Shangqin He. LIE SYMMETRY REDUCTION FOR (2+1)-DIMENSIONAL FRACTIONAL SCHRÖDINGER EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 502-516. doi: 10.11948/20240133
Citation: Panpan Wang, Xiufang Feng, Shangqin He. LIE SYMMETRY REDUCTION FOR (2+1)-DIMENSIONAL FRACTIONAL SCHRÖDINGER EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 502-516. doi: 10.11948/20240133

LIE SYMMETRY REDUCTION FOR (2+1)-DIMENSIONAL FRACTIONAL SCHRÖDINGER EQUATION

  • Author Bio: Email: 12022140038@stu.nxu.edu.cn(P. Wang); Email: hsq101@163.com(S. He)
  • Corresponding author: Email: xf_feng@nxu.edu.cn(X. Feng) 
  • Fund Project: The authors were supported by Scientific research project of Ningxia Education Department (Grant No. NYG2022062), National Science Foundation of Ningxia Province (Grant No. 2023AAC03257), National Natural Science Foundation of China (Grant No. 11961054)
  • This study investigates Lie symmetry analysis, exact solutions, and conservation laws for a (2+1)-dimensional fractional Schrödinger equation. The original equations have been reduced to fractional ODEs employing the obtained vector field. For the considered equation, exact solutions are also established. Furthermore, the resulting exact solutions are demonstrated for convergence. Conservation laws for this equation have been investigated employing the Ibragimov theorem.

    MSC: 22E60, 34K37
  • 加载中
  • [1] M. Abdel Aal and O. Abu Arqub, Lie analysis and laws of conservation for the two-dimensional model of Newell–Whitehead–Segel regarding the Riemann operator fractional scheme in a time-independent variable, Arab Journal of Basic and Applied Sciences, 2023, 30(1), 55–67. doi: 10.1080/25765299.2023.2172840

    CrossRef Google Scholar

    [2] O. Abu Arqub, T. Hayat and M. Alhodaly, Analysis of lie symmetry, explicit series solutions, and conservation laws for the nonlinear time-fractional phi-four equation in two-dimensional space, International Journal of Applied and Computational Mathematics, 2022, 8(3), 145–161. doi: 10.1007/s40819-022-01334-0

    CrossRef Google Scholar

    [3] R. Al-Deiakeh, O. Abu Arqub and M. Al-Smadi, Lie symmetry analysis, explicit solutions, and conservation laws of the time-fractional Fisher equation in two-dimensional space, Journal of Ocean Engineering and Science, 2022, 7(4), 345–352. doi: 10.1016/j.joes.2021.09.005

    CrossRef Google Scholar

    [4] M. Al-Smadi, O. Abu Arqub and S. Momani, Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense, Physica Scripta, 2020, 95(7), 075218–075239. doi: 10.1088/1402-4896/ab96e0

    CrossRef Google Scholar

    [5] M. N. Alam and C. Tunç, The new solitary wave structures for the (2+1)-dimensional time-fractional Schrodinger equation and the space-time nonlinear conformable fractional Bogoyavlenskii equations, Alexandria Engineering Journal, 2020, 59, 2221–2232. doi: 10.1016/j.aej.2020.01.054

    CrossRef Google Scholar

    [6] O. A. Arqub, Application of residual power series method for the solution of time-fractional Schrödinger equations in one-dimensional space, Fundamenta Informaticae, 2019, 166(2), 87–110. doi: 10.3233/FI-2019-1795

    CrossRef Google Scholar

    [7] E. Buckwar and Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, Journal of Mathematical Analysis and Applications, 1998, 227(1), 81–97. doi: 10.1006/jmaa.1998.6078

    CrossRef Google Scholar

    [8] R. K. Gazizov, A. A. Kasatkin and S. Y. Lukashchuk, Symmetry properties of fractional diffusion equations, Physica Scripta, 2009, 2009(T136), 014016–014020.

    Google Scholar

    [9] M. S. Hashemi, A. Haji-Badali and F. Alizadeh, Classical and non-classical Lie symmetry analysis, conservation laws and exact solutions of the time-fractional Chen-Lee-Liu equation, Computational and Applied Mathematics, 2023, 42(2), 73–93. doi: 10.1007/s40314-023-02217-w

    CrossRef Google Scholar

    [10] N. H. Ibragimov, A new conservation theorem, Journal of Mathematical Analysis and Applications, 2007, 333, 311–328. doi: 10.1016/j.jmaa.2006.10.078

    CrossRef Google Scholar

    [11] M. Inc, A. Yusuf and A. I. Aliyu, Lie symmetry analysis, explicit solutions and conservation laws for the space–time fractional nonlinear evolution equations, Physica A: Statistical Mechanics and its Applications, 2018, 496, 371–383. doi: 10.1016/j.physa.2017.12.119

    CrossRef Google Scholar

    [12] M. T. Islam, M. A. Akbar and J. F. Gómez-Aguilar, Assorted soliton structures of solutions for fractional nonlinear Schrodinger types evolution equations, Journal of Ocean Engineering and Science, 2022, 7, 528–535. doi: 10.1016/j.joes.2021.10.006

    CrossRef Google Scholar

    [13] C. Li, Q. Guo and M. Zhao, On the solutions of (2+1)-dimensional time-fractional Schrödinger equation, Applied Mathematics Letters, 2019, 94, 238–243. doi: 10.1016/j.aml.2019.02.033

    CrossRef Google Scholar

    [14] P. Olver, Application of Lie Group to Differential Equation, 1986, Springer.

    Google Scholar

    [15] X. Peng, Y. W. Zhao and X. Lü, Data-driven solitons and parameter discovery to the (2+1)-dimensional NLSE in optical fiber communications, Nonlinear Dynamics, 2024, 112, 1291–1306. doi: 10.1007/s11071-023-09083-5

    CrossRef Google Scholar

    [16] M. Rahioui, E. H. El Kinani and A. Ouhadan, Invariant Analysis, Approximate Solutions, and Conservation Laws for the Time Fractional Higher Order Boussinesq–Burgers System, Mathematical Methods in the Applied Sciences, 2024.

    Google Scholar

    [17] M. Rahioui, E. H. El Kinani and A. Ouhadan, Investigation of some time–space M-truncated partial differential equations: Lie symmetry analysis, exact solutions and conservation laws, International Journal of Applied and Computational Mathematics, 2024, 10(2), 1–20.

    Google Scholar

    [18] M. Rahioui, E. H. El Kinani and A. Ouhadan, Nonlocal residual symmetries, N-th Bäcklund transformations and exact interaction solutions for a generalized Broer-Kaup-Kupershmidt system, Zeitschrift für angewandte Mathematik und Physik, 2024, 75(2), 1–10.

    Google Scholar

    [19] S. T. R. Rizvi, K. Ali and S. Bashir, Exact soliton of (2+1)-dimensional fractional Schrödinger equation, Superlattices and Microstructures, 2017, 107, 234–239. doi: 10.1016/j.spmi.2017.04.029

    CrossRef Google Scholar

    [20] R. Sahadevan and T. Bakkyaraj, Invariant analysis of time fractional generalized Burgers and Korteweg–de Vries equations, Journal of mathematical analysis and applications, 2012, 393, 341–347. doi: 10.1016/j.jmaa.2012.04.006

    CrossRef Google Scholar

    [21] H. Triki and V. I. Kruglov, Propagation of dipole solitons in inhomogeneous highly dispersive optical-fiber media, Physical Review E, 2020, 101, 042220–042230. doi: 10.1103/PhysRevE.101.042220

    CrossRef Google Scholar

    [22] G. Wang, X. Liu and Y. Zhang, Lie symmetry analysis to the time fractional generalized fifth-order KdV equation, Communications in Nonlinear Science and Numerical Simulation, 2013, 18(9), 2321–2326. doi: 10.1016/j.cnsns.2012.11.032

    CrossRef Google Scholar

Figures(2)

Article Metrics

Article views(689) PDF downloads(202) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint