Citation: | Hamza El-Houari, Elhoussain Arhrrabi, Hicham Moussa. STUDY OF SCHRÖDINGER-CHOQUARD PROBLEM WITH P(·)-LAPLACIAN OPERATOR[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 479-494. doi: 10.11948/20240146 |
In this paper, our focus is on a specific class of non-linear $ \psi $-Hilfer fractional generalized Schrödinger-Choquard differential equations involving the $ p(\cdot) $-Laplacian operator with Dirichlet boundary conditions. By employing the mountain pass theorem without the Palais–Smale condition, along with the Hardy-Littlewood-Sobolev inequality with variable exponents, we establish the existence of a weak solution to our problem. Our main results are novel and contribute to the literature on problems involving $ \psi $-Hilfer derivatives with the $ p(\cdot) $-Laplacian operator. This investigation enhances the scope of understanding in this specific class of problems.
[1] | C. Alves, A. Moussaoui and L. Tavares, An elliptic system with logarithmic nonlinearity, Adv. Nonlinear Anal., 2017, 8(1), 928–945. doi: 10.1515/anona-2017-0200 |
[2] | C. O. Alves and L. S. Tavares, A hardy-littlewood-sobolev-type inequality for variable exponents and applications to quasilinear Choquard equations involving variable exponent, Mediterr. J. Math., 2019, 16, 55. doi: 10.1007/s00009-019-1316-z |
[3] | C. O. Alves and M. Yang, Existence of semiclassical ground state solutions for a generalized Choquard equation, J. Diff. Equat., 2014, 257(11), 4133–4164. doi: 10.1016/j.jde.2014.08.004 |
[4] |
E. Arhrrabi and H. El-Houari, On a class of generalized cappilarity phenomena involving fractional $\psi$-Hilfer derivative with $p(\cdot)$-Lapla cian operator, Kragujevac J. Math., 2026, 50(6), 885–905.
$\psi$-Hilfer derivative with |
[5] |
E. Arhrrabi and H. El-Houari, On a class of generalized capillarity system involving fractional $\psi$-Hilfer derivative with $p(\cdot)$-Laplacian operator, Math. Methods Appl. Sci., 2025, 48(3), 3448–3470. doi: 10.1002/mma.10495
CrossRef $\psi$-Hilfer derivative with |
[6] | E. Arhrrabi and H. El-Houari, Fractional sobolev space: Study of Kirchhoff-Schrödinger systems with singular nonlinearity, Cubo, 2024, 26(3), 407–430. doi: 10.56754/0719-0646.2603.407 |
[7] |
E. Arhrrabi, H. El-Houari and A. Ghanmi, Study of generalized double phase logarithmic problem with $\tau $-Laplacian operator, Math Found Comput., 2025. DOI: 10.3934/mfc.2025007.
CrossRef $\tau $-Laplacian operator" target="_blank">Google Scholar |
[8] |
E. Arhrrabi, H. El-Houari and A. Ghanmi, A note on a generalized singular capillarity system with $\Im$-Hilfer fractional derivative, Pseudo-Differ. Oper. Appl. and Applications, 2025, 16(1), 10.
$\Im$-Hilfer fractional derivative" target="_blank">Google Scholar |
[9] |
E. Arhrrabi, H. El-Houari, A. Ghanmi and K. Kefi, Study of generalized double-phase problem with $\xi$-Laplacian operator, Mathematics, 2025, 13(5), 700. doi: 10.3390/math13050700
CrossRef $\xi$-Laplacian operator" target="_blank">Google Scholar |
[10] | J. H. Chabrowski, Variational methods for potential operator equations: With applications to nonlinear elliptic equations, Walter de Gruyter, 2011, 24. |
[11] | A. C. R. Costa, M. C. Ferreira and L. S. Tavares, On a nonlocal nonhomogeneous neumann boundary problem with two critical exponents, Complex Var. Elliptic Equ., 2019, 64(11), 1954–1972. doi: 10.1080/17476933.2019.1572122 |
[12] | D. Edmunds and J. Rákosník. Sobolev embeddings with variable exponent, Studia Math., 2000, 3(143), 267–293. |
[13] | A. Elhoussain and E. H. Hamza, Study of double phase-Choquard problem in generalized $\psi$-Hilfer fractional derivative spaces with $p$-Laplacian operator, Kragujevac J. Math., 2026, 50(7), 1087–1103. |
[14] | A. Elhoussain and E. H. Hamza, Fractional Sobolev space with variable exponents: Study of Kirchhoff problem by berkovits degree theory, Nonlinear Stud., 2024, 31(4), 1135–1147. |
[15] |
A. Elhoussain, E. H. Hamza and J. V. da C. Sousa, On a class of capillarity phenomenon with logarithmic nonlinearity involving $\theta(\cdot)$-Laplacian operator, Comput. Appl. Math., 2024, 43(6), 344. doi: 10.1007/s40314-024-02863-8
CrossRef $\theta(\cdot)$-Laplacian operator" target="_blank">Google Scholar |
[16] | X. Fan and X. Han, Existence and multiplicity of solutions for p(x)-Laplacian equations in $\mathbb{R}.N$, Nonlinear Anal., 2000, 59(1–2), 173–188. |
[17] |
X. Fan, Q. Zhang and D. Zhao, Eigenvalues of $p(u)$-Laplacian dirichlet problem, J. Math. Anal. Appl., 2005, 302(2), 306–317. doi: 10.1016/j.jmaa.2003.11.020
CrossRef $p(u)$-Laplacian dirichlet problem" target="_blank">Google Scholar |
[18] |
X. Fan and D. Zhao, On the spaces $L.{p(u)}(\Omega)$ and $W.{m, p(u)}(\Omega)$, J. Math. Anal. Appl., 2001, 263(2), 424–446. doi: 10.1006/jmaa.2000.7617
CrossRef $L.{p(u)}(\Omega)$ and |
[19] |
X. Fan, Y. Zhao and D. Zhao, Compact embedding theorems with symmetry of straussLions type for the space $W.{1, p(x)}(\mathbb{R}.{N})$, J. Math. Anal. Appl., 2001, 255, 333–348. doi: 10.1006/jmaa.2000.7266
CrossRef $W.{1, p(x)}(\mathbb{R}.{N})$" target="_blank">Google Scholar |
[20] |
X. Fan, Y. Zhao and D. Zhao, Sobolev embedding theorems for spaces $W.{k, p(x)}(\Omega)$, J. Math. Anal. Appl., 2001, 262(2), 749–760. doi: 10.1006/jmaa.2001.7618
CrossRef $W.{k, p(x)}(\Omega)$" target="_blank">Google Scholar |
[21] | J. Fröhlich and E. Lenzmann, Mean-field limit of quantum Bose gases and nonlinear Hartree equation, Séminaire: Équations aux Dérivées Partielles, (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz", 2003, 1–26. |
[22] |
E. H. Hamza, A. Elhoussain and N. Nyamoradi, $\Im$-Hilfer double phase choquard problems with singular nonlinearity, Mediterr. J. Math., 2025, 22, 153. doi: 10.1007/s00009-025-02890-7
CrossRef $\Im$-Hilfer double phase choquard problems with singular nonlinearity" target="_blank">Google Scholar |
[23] | E. H. Hamza, A. Elhoussain and J. V. d. d. C. Sousa, On a class of Kirchhoff problems with nonlocal terms and logarithmic nonlinearity, J. Pseudo-Differ. Oper. Appl., 2024, 15, 52. doi: 10.1007/s11868-024-00624-z |
[24] | R. Hilfer, Fractional diffusion based on riemann-liouville fractional derivatives, The Journal of Physical Chemistry B, 2000, 104(16), 3914–3917. doi: 10.1021/jp9936289 |
[25] | H. El-Houari and E. Arhrrabi, On a class of Kirchhoff problem involving Choquard nonlinearity with real parameter, Filomat, 2024, 38(28), 9947–9960. doi: 10.2298/FIL2428947E |
[26] | P. Le, Liouville theorems for ap-Laplace equation with hartree type nonlinearity, Vietnam J. Math., 2023, 1–14. |
[27] | E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 1977, 57(2), 93–105. doi: 10.1002/sapm197757293 |
[28] | P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 1980, 4(6), 1063–1072. doi: 10.1016/0362-546X(80)90016-4 |
[29] | V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 2013, 265(2), 153–184. doi: 10.1016/j.jfa.2013.04.007 |
[30] | E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces, Bull. Sci. Math., 2012, 136(5), 521–573. doi: 10.1016/j.bulsci.2011.12.004 |
[31] | R. Penrose, On gravity's role in quantum state reduction, Gen. Relativity Gravitation, 1996, 28, 581–600. doi: 10.1007/BF02105068 |
[32] | T. Saanouni, Scattering threshold for the focusing Choquard equation, Nonlinear Differ. Equ. Appl., 2019, 26, 41. doi: 10.1007/s00030-019-0587-1 |
[33] |
J. Sousa, K. B. Lima and L. S. Tavares, Existence of solutions for a singular double phase problem involving a $\phi $-Hilfer fractional operator via nehari manifold, Qual. Theory Dyn. Syst., 2023, 22(3), 1–26.
$\phi $-Hilfer fractional operator via nehari manifold" target="_blank">Google Scholar |
[34] | J. V. d. C. Sousa, A. Elhoussain, E. H. Hamza, et al., Basic results for fractional anisotropic spaces and applications, J. Pseudo-Differ. Oper. Appl., 2024, 15, 71. doi: 10.1007/s11868-024-00641-y |
[35] |
J. V. d. C. Sousa, E. H. Hamza and A. Elhoussain, A singular generalized Kirchhoff-double-phase problem with $p$-Laplacian operator, J. Fixed Point Theory Appl., 2025, 27(1), 2. doi: 10.1007/s11784-024-01157-0
CrossRef $p$-Laplacian operator" target="_blank">Google Scholar |
[36] | J. V. d. C. Sousa, D. S. Oliveira and L. S. Tavares, Solutions of the mean curvature equation with the nehari manifold, Comput. Appl. Math., 2024, 43(1), 24. doi: 10.1007/s40314-023-02534-0 |
[37] |
J. V. d. C. Sousa and E. C. de Oliveira, On the $\phi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 2018, 60, 72–91. doi: 10.1016/j.cnsns.2018.01.005
CrossRef $\phi$-Hilfer fractional derivative" target="_blank">Google Scholar |
[38] |
J. V. d. C. Sousa, M. A. P. Pulido and E. C. D. Oliveira, Existence and regularity of weak solutions for $\phi$-Hilfer fractional boundary value problem, Mediterr. J. Math., 2021, 18(4), 147. doi: 10.1007/s00009-021-01789-3
CrossRef $\phi$-Hilfer fractional boundary value problem" target="_blank">Google Scholar |
[39] |
K. C. Vicente de Sousa and L. S. Tavares, Multiple solutions for a class of problems involving the $p(x)$-Laplacian operator, Appl. Anal., 2022, 101(15), 5415–5423. doi: 10.1080/00036811.2021.1892081
CrossRef $p(x)$-Laplacian operator" target="_blank">Google Scholar |
[40] |
H. M. Srivastava and J. V. da Costa Sousa, Multiplicity of solutions for fractional-order differential equations via the $r(x)$-Laplacian operator and the genus theory, Fractal and Fractional, 2022, 6(9), 481. doi: 10.3390/fractalfract6090481
CrossRef $r(x)$-Laplacian operator and the genus theory" target="_blank">Google Scholar |
[41] | V. E. Tarasov and E. C. Aifantis, On fractional and fractal formulations of gradient linear and nonlinear elasticity, Acta Mech., 2019, 230, 2043–2070. doi: 10.1007/s00707-019-2373-x |
[42] | L. S. Tavares, Multiple solutions for a system involving an anisotropic variable exponent operator, Bound. Value Probl., 2022, 2022(1), 24. doi: 10.1186/s13661-022-01605-1 |