2025 Volume 15 Issue 3
Article Contents

S. M. Sohel Rana, Md. Jasim Uddin, A. Q. Khan. BIFURCATION AND CHAOS IN A DISCRETE FRACTIONAL ORDER REDUCED LORENZ MODEL WITH CAPUTO AND CONFORMABLE DERIVATIVES[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1241-1271. doi: 10.11948/20240181
Citation: S. M. Sohel Rana, Md. Jasim Uddin, A. Q. Khan. BIFURCATION AND CHAOS IN A DISCRETE FRACTIONAL ORDER REDUCED LORENZ MODEL WITH CAPUTO AND CONFORMABLE DERIVATIVES[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1241-1271. doi: 10.11948/20240181

BIFURCATION AND CHAOS IN A DISCRETE FRACTIONAL ORDER REDUCED LORENZ MODEL WITH CAPUTO AND CONFORMABLE DERIVATIVES

  • This study investigates a discrete fractional order reduced Lorenz model that incorporates the Caputo and Conformable fractional derivatives respectively. The stability of equilibrium points of the model with Caputo fractional derivative are analyzed. The Conformable fractional derivative model is likewise examined. We confirm algebraically the existence and direction of Neimark-Sacker bifurcation for both models using the central manifold and bifurcation theories. The dynamic behavior of these models have been extensively investigated based on changes made to the control parameters. In addition to supporting analytical findings, numerical simulations are used to reveal chaotic characteristics such as bifurcations, phase portraits, periodic orbits, invariant closed cycles, and attractive chaotic sets. We also quantitatively compute the maximal Lyapunov exponents and fractal dimensions to validate the chaotic properties of the system. Using three different control strategies viz, OGY, hybrid control method, and state feedback method, the system's chaotic trajectory is finally stopped.

    MSC: 37C25, 37D45, 40A05, 39A33, 70K50
  • 加载中
  • [1] M. A. M. Abdelaziz, A. I. Ismail, F. A. Abdullah and M. H. Mohd, Codimension one and two bifurcations of a discrete-time fractional-order SEIR measles epidemic model with constant vaccination, Chaos, Solitons & Fractals, 2020, 140, 110104.

    Google Scholar

    [2] M. A. M. Abdelaziz, A. I. Ismail, F. Abdullah and M. H. Mohd, Bifurcations and chaos in a discrete SI epidemic model with fractional order, Advances in Difference Equations, 2018, 2018(1), 1–19. doi: 10.1186/s13662-017-1452-3

    CrossRef Google Scholar

    [3] R. P. Agarwal, A. El-Sayed and S. M. Salman, Fractional-order Chua's system: Discretization, bifurcation and chaos, Advances in Difference Equations, 2013, 1(2013), 1–13.

    Google Scholar

    [4] H. N. Agiza, E. M. Elabbasy, H. El-Metwally and A. A. Elsadany, Chaotic dynamics of a discrete prey–predator model with Holling type Ⅱ, Nonlinear Analysis: Real World Applications, 2009, 10(1), 116–129. doi: 10.1016/j.nonrwa.2007.08.029

    CrossRef Google Scholar

    [5] W. M. Ahmad and J. C. Sprott, Chaos in fractional-order autonomous nonlinear systems, Chaos, Solitons & Fractals, 2003, 16(2), 339–351.

    Google Scholar

    [6] R. Ahmed, N. Tahir and N. A. Shah, An analysis of the stability and bifurcation of a discrete-time predator–prey model with the slow–fast effect on the predator, Chaos: An Interdisciplinary Journal of Nonlinear Science, 2024, 34, 3.

    Google Scholar

    [7] S. Akhtar, R. Ahmed, M. Batool, N. A. Shah and J. D. Chung, Stability, bifurcation and chaos control of a discretized Leslie prey-predator model, Chaos, Solitons & Fractals, 2021, 152, 111345.

    Google Scholar

    [8] I. Ameen and P. Novati, The solution of fractional order epidemic model by implicit Adams methods, Applied Mathematical Modelling, 2017, 43, 78–84. doi: 10.1016/j.apm.2016.10.054

    CrossRef Google Scholar

    [9] A. Atangana, A novel model for the lassa hemorrhagic fever: Deathly disease for pregnant women, Neural Computing and Applications, 2015, 26(8), 1895–1903. doi: 10.1007/s00521-015-1860-9

    CrossRef Google Scholar

    [10] R. L. Bagley and R. Calico, Fractional order state equations for the control of visco–elastically damped structures, Journal of Guidance, Control, and Dynamics, 1991, 14(2), 304–311. doi: 10.2514/3.20641

    CrossRef Google Scholar

    [11] E. Balcı, S. Kartal and İ Öztürk, Comparison of dynamical behavior between fractional order delayed and discrete conformable fractional order tumor-immune system, Mathematical Modelling of Natural Phenomena, 2021, 16(3).

    Google Scholar

    [12] E. Balcı, İ Öztürk and S. Kartal, Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative, Chaos, Solitons & Fractals, 2019, 123, 43–51.

    Google Scholar

    [13] D. Baleanu, A. Jajarmi, E. Bonyah and M. Hajipour, New aspects of poor nutrition in the life cycle within the fractional calculus, Advances in Difference Equations, 2018, 2018(1), 1–14. doi: 10.1186/s13662-017-1452-3

    CrossRef Google Scholar

    [14] N. S. S. Barhoom and S. Al-Nassir, Discretization fractional-order biological model with optimal harvesting, Abstract and Applied Analysis, 2022, 2022. DOI: 10.1155/2022/8171037.

    Google Scholar

    [15] L. Bolton, A. Cloot, H. Alain, S. W. Schoombie, J. Slabbert and P. Jacobus, A proposed fractional-order Gompertz model and its application to tumour growth data, Mathematical Medicine and Biology: A Journal of the IMA, 2015, 32(2), 187–209. doi: 10.1093/imammb/dqt024

    CrossRef Google Scholar

    [16] J. H. E. Cartwright, Nonlinear stiffness, Lyapunov exponents, and attractor dimension, Physics Letters A, 1999, 264(4), 298–302. doi: 10.1016/S0375-9601(99)00793-8

    CrossRef Google Scholar

    [17] W. S. Chung, Fractional Newton mechanics with conformable fractional derivative, Journal of Computational and Applied Mathematics, 2015, 290, 150–158. doi: 10.1016/j.cam.2015.04.049

    CrossRef Google Scholar

    [18] Y. Cui, H. He, G. Sun and C. Lu, Analysis and control of fractional order generalized Lorenz chaotic system by using finite time synchronization, Adv. Math. Phys., 2019, 1–12. DOI: 10.1155/2019/3713789.

    Google Scholar

    [19] O. Edward, G. Celso and A. Y. James, Controlling chaos, Physical Review Letters, 1990, 64(11), 1196–1199. doi: 10.1103/PhysRevLett.64.1196

    CrossRef Google Scholar

    [20] E. M. Elabbasy, A. A. Elsadany and Y. Zhang, Bifurcation analysis and chaos in a discrete reduced Lorenz system, Applied Mathematics and Computation, 2014, 228, 184–194. doi: 10.1016/j.amc.2013.11.088

    CrossRef Google Scholar

    [21] A. A. Elsadany and A. E. Matouk, Dynamical behaviors of fractional-order Lotka–Volterra predator–prey model and its discretization, Journal of Applied Mathematics and Computing, 2015, 49(1), 269–283.

    Google Scholar

    [22] A. Elsonbaty and A. A. Elsadany, Bifurcation analysis of chaotic geomagnetic field model, Chaos, Solitons & Fractals, 2017, 103, 325–335.

    Google Scholar

    [23] Z. Eskandari, P. A. Naik and M. Yavuz, Dynamical behaviors of a discrete-time prey–predator model with harvesting effect on the predator, J. Appl. Anal. Comput, 2024, 14, 283–297.

    Google Scholar

    [24] C. E. Frouzakis, I. G. Kevrekidis and B. B. Peckham, A route to computational chaos revisited: Noninvertibility and the breakup of an invariant circle, Physica D: Nonlinear Phenomena, 2003, 177(1–4), 101–121. doi: 10.1016/S0167-2789(02)00751-0

    CrossRef Google Scholar

    [25] Y. Gao annd B. Liu, Study on the dynamical behaviors of a two-dimensional discrete system, Nonlinear Analysis: Theory, Methods & Applications, 2009, 70(12), 4209–4216.

    Google Scholar

    [26] Y. Gu, G. Li, X. Xu, X. Song and H. Zhong, Solution of a new high-performance fractional-order Lorenz system and its dynamics analysis, Nonlinear Dynamics, 2023, 111(8), 7469–7493. doi: 10.1007/s11071-023-08239-7

    CrossRef Google Scholar

    [27] Z. Hu, Z. Teng and L. Zhang, Stability and bifurcation analysis of a discrete predator–prey model with nonmonotonic functional response, Nonlinear Analysis: Real World Applications, 2011, 12(4), 2356–2377.

    Google Scholar

    [28] C. Huang, J. Cao, M. Xiao, A. Alsaedi and F. E. Alsaadi, Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders, Applied Mathematics and Computation, 2017, 293, 293–310.

    Google Scholar

    [29] C. Huang, J. Cao, M. Xiao, A. Alsaedi and T. Hayat, Bifurcations in a delayed fractional complex-valued neural network, Applied Mathematics and Computation, 2017, 292, 210–227.

    Google Scholar

    [30] C. Huang, J. Cao, M. Xiao, A. Alsaedi and T. Hayat, Effects of time delays on stability and Hopf bifurcation in a fractional ring-structured network with arbitrary neurons, Communications in Nonlinear Science and Numerical Simulation, 2018, 57, 1–13.

    Google Scholar

    [31] C. Huang, Y. Meng, J. Cao, A. Alsaedi and F. E. Alsaadi, New bifurcation results for fractional BAM neural network with leakage delay, Chaos, Solitons & Fractals, 2017, 100, 31–44.

    Google Scholar

    [32] M. Ichise, Y. Nagayanagi and T. Kojima, An analog simulation of non-integer order transfer functions for analysis of electrode processes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971, 33(2), 253–265.

    Google Scholar

    [33] H. Jafari and V. Daftardar-Gejji, Solving a system of nonlinear fractional differential equations using Adomian decomposition, Journal of Computational and Applied Mathematics, 2006, 196(2), 644–651.

    Google Scholar

    [34] A. Jajarmi and D. Baleanu, A new iterative method for the numerical solution of high-order non-linear fractional boundary value problems, Frontiers in Physics, 2020, 8, 220.

    Google Scholar

    [35] Z. Jing and J. Yang, Bifurcation and chaos in discrete-time predator–prey system, Chaos, Solitons & Fractals, 2006, 27(1), 259–277.

    Google Scholar

    [36] S. Kartal and F. Gurcan, Discretization of conformable fractional differential equations by a piecewise constant approximation, International Journal of Computer Mathematics, 2019, 96(6), 1849–1860.

    Google Scholar

    [37] R. Khalil, M. A. Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 2014, 264, 65–70. DOI: 10.1016/j.cam.2014.01.

    CrossRef Google Scholar

    [38] A. Q. Khan, S. A. H. Bukhari and M. B. Almatrafi, Global dynamics, Neimark-Sacker bifurcation and hybrid control in a Leslie's prey-predator model, Alexandria Engineering Journal, 2022, 61(12), 11391–11404.

    Google Scholar

    [39] A. Q. Khan and T. Khalique, Neimark-Sacker bifurcation and hybrid control in a discrete-time Lotka-Volterra model, Mathematical Methods in the Applied Sciences, 2020, 43(9), 5887–5904.

    Google Scholar

    [40] E. N. Lorenz, Computational chaos-a prelude to computational instability, Physica D: Nonlinear Phenomena, 1989, 35(3), 299–317.

    Google Scholar

    [41] C. Luo and X. Wang, Chaos in the fractional-order complex Lorenz system and its synchronization, Nonlinear Dynamics, 2013, 71, 241–257.

    Google Scholar

    [42] S. Lynch and others, Dynamical Systems with Applications using Mathematica, Springer, 2007.

    Google Scholar

    [43] S. Momani and Z. Odibat, Numerical approach to differential equations of fractional order, Journal of Computational and Applied Mathematics, 2007, 207(1), 96–110.

    Google Scholar

    [44] D. Mozyrska and W. Małgorzata, Stability analysis of discrete-time fractional-order Caputo-type Lorenz system, 42nd International Conference on Telecommunications and Signal Processing (TSP), IEEE, 2019, 149–153. DOI: 10.1109/TSP.2019.8768861.

    Google Scholar

    [45] P. A. Naik, Z. Eskandari, H. E. Shahkari and K. M. Owolabi, Bifurcation analysis of a discrete-time prey-predator model, Bulletin of Biomathematics, 2023, 1(2), 111–123.

    Google Scholar

    [46] P. A. Naik, Z. Eskandari, M. Yavuz and J. Zu, Complex dynamics of a discrete-time Bazykin–Berezovskaya prey-predator model with a strong Allee effect, Journal of Computational and Applied Mathematics, 2022, 413, 114401.

    Google Scholar

    [47] C. M. A. Pinto and J. T. Machado, Fractional model for malaria transmission under control strategies, Computers & Mathematics with Applications, 2013, 66(5), 908–916.

    Google Scholar

    [48] I. Podlubny, Fractional Differential Equations, NewYork: Academic Press, 1999.

    Google Scholar

    [49] Z. F. El Raheem and S. M. Salman, On a discretization process of fractional-order logistic differential equation, Journal of the Egyptian Mathematical Society, 2014, 22(3), 407–412.

    Google Scholar

    [50] S. M. Rana, Dynamics and chaos control in a discrete-time ratio-dependent Holling-Tanner model, Journal of the Egyptian Mathematical Society, 2019, 27(1), 1–16.

    Google Scholar

    [51] S. M. Rana and U. Kulsum, Bifurcation analysis and chaos control in a discrete-time predator-prey system of Leslie type with simplified Holling type Ⅳ functional response, Discrete Dynamics in Nature and Society, 2017, 2017. DOI: 10.1155/2017/9705985.

    CrossRef Google Scholar

    [52] S. M. S. Rana and M. J. Uddin, Dynamics of a discrete-time chaotic Lü system, Pan-American Journal of Mathematics, 2022, 1, 7. DOI: 10.28919/cpr-pajm/1-7.

    CrossRef Google Scholar

    [53] M. Richard, D. Manuel, P. Igor and T. Juan, On the fractional signals and systems, Signal Processing, 2011, 91(3), 350–371.

    Google Scholar

    [54] S. M. Salman, A. M. Yousef and A. A. Elsadany, Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response, Chaos, Solitons & Fractals, 2016, 93, 20–31.

    Google Scholar

    [55] C. Sparrow, The Lorenz Equations, Springer, New York, 1982, 269.

    Google Scholar

    [56] N. Tahir, R. Ahmed and N. A. Shah, Complex dynamics of a discrete-time Leslie–Gower predator–prey system with herd behavior and slow–fast effect on predator population, International Journal of Biomathematics, 2024, 2450040, 26.

    Google Scholar

    [57] M. J. Uddin, M. B. Almatrafi and S. Monira, A study on qualitative analysis of a discrete fractional order prey-predator model with intraspecific competition, Commun. Math. Biol. Neurosci., 2024, 2024. DOI: 10.28919/cmbn/8477.

    CrossRef Google Scholar

    [58] M. J. Uddin and S. M. S. Rana, Analysis of chaotic dynamics: A fractional order glycolysis model, Network Biology, 2022. http://www.iaees.org/publications/journals/nb/articles/2022-12(4)/2022-12(4).asp.

    Google Scholar

    [59] M. J. Uddin and S. M. Sohel Rana, Qualitative analysis of the discretization of a continuous fractional order prey-predator model with the effects of harvesting and immigration in the population, Complexity, 2024, 2024(1). DOI: 10.1155/2024/8855142.

    CrossRef Google Scholar

    [60] M. J. Uddin, S. M. S. Rana, S. Işık and F. Kangalgil, On the qualitative study of a discrete fractional order prey–predator model with the effects of harvesting on predator population, Chaos, Solitons & Fractals, 2023, 175, 113932.

    Google Scholar

    [61] X. Xie, L. Zujun and W. Hui, An image information hiding algorithm based on chaotic permutation, NJ Inf. Secur. Commun., 2007, 6, 187–191.

    Google Scholar

    [62] Y. Xie, A fractional‐order discrete Lorenz map, Advances in Mathematical Physics, 2022, 1, 2881207.

    Google Scholar

    [63] Y. Xu, R. Gu, H. Zhang and D. Li, Chaos in diffusionless Lorenz system with a fractional order and its control, International Journal of Bifurcation and Chaos, 2012, 22(04), 1250088.

    Google Scholar

    [64] L. G. Yuan and Q. G. Yang, Bifurcation, invariant curve and hybrid control in a discrete-time predator–prey system, Applied Mathematical Modelling, 2015, 39(8), 2345–2362.

    Google Scholar

Figures(11)

Article Metrics

Article views(409) PDF downloads(285) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint