Citation: | Doaa Filali, Nidal H. E. Eljaneid, Amal F. Alharbi, Esmail Alshaban, Faizan Ahmad Khan, Mohammed Zayed Alruwaytie. SOLUTION OF CERTAIN PERIODIC BOUNDARY VALUE PROBLEM IN RELATIONAL METRIC SPACE VIA RELATIONAL ALMOST φ-CONTRACTIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1272-1283. doi: 10.11948/20240195 |
This article is comprised of outcomes on fixed points for almost Matkowski contractions via locally $\mathcal{J} $-transitive relations. Our outcomes sharpen, unify, enrich and improve many fixed point theorems of the existing literatures. Several examples are furnished to demonstrate the credibility of our results. By implementing our outcomes, we ascertain a unique solution for certain boundary value problem.
[1] | R. P. Agarwal, M. A. El-Gebeily and D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 2008, 87(1), 109–116. doi: 10.1080/00036810701556151 |
[2] | A. Alam, M. Arif and M. Imdad, Metrical fixed point theorems via locally finitely T-transitive binary relations under certain control functions, Miskolc Math. Notes, 2019, 20(1), 59–73. doi: 10.18514/MMN.2019.2468 |
[3] | A. Alam, R. George and M. Imdad, Refinements to relation-theoretic contraction principle, Axioms, 2022, 11, 316, 6 pp. |
[4] | A. Alam and M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl., 2015, 17(4), 693–702. doi: 10.1007/s11784-015-0247-y |
[5] | A. Alam and M. Imdad, Relation-theoretic metrical coincidence theorems, Filomat, 2017, 31(14), 4421–4439. doi: 10.2298/FIL1714421A |
[6] | A. Alam and M. Imdad, Nonlinear contractions in metric spaces under locally T-transitive binary relations, Fixed Point Theory, 2018, 19(1), 13–24. |
[7] | S. F. Aldosary, I. Uddin and S. Mujahid, Relational Geraghty contractions with an application to a singular fractional boundary value problem, J. Appl. Anal. Comp., 2024, 14(6), 3480–3495. |
[8] | B. Almarri, S. Mujahid and I. Uddin, New fixed point results for Geraghty contractions and their applications, J. Appl. Anal. Comp., 2023, 13(5), 2788–2798. |
[9] | N. H. Altaweel and F. A. Khan, Relation-theoretic fixed point theorems involving certain auxiliary functions with applications, Symmetry, 2022, 14, 2614, 12 pp. |
[10] | M. Arif, M. Imdad and A. Alam, Fixed point theorems under locally T-transitive binary relations employing Matkowski contractions, Miskolc Math. Notes, 2022, 23(1), 71–83. doi: 10.18514/MMN.2022.3220 |
[11] | M. Arif, I. A. Khan, M. Imdad and A. Alam, Employing locally finitely T-transitive binary relations to prove coincidence theorems for nonlinear contractions, J. Funct. Spaces, 2020, 2020, 6574695, 12 pp. |
[12] | V. Berinde, Iterative Approximation of Fixed Points, Springer-Verlag, Heidelberg, Germany, 2007. |
[13] | V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum., 2004, 9(1), 43–53. |
[14] | N. H. E. Eljaneid, F. A. Khan, H. I. A. Mohammed and A. Alam, Relational quasi-contractions and related fixed point theorems, J. Math., 2022, 2022, 4477660, 6 pp. |
[15] | A. Hossain, F. A. Khan and Q. H. Khan, A relation-theoretic metrical fixed point theorem for rational type contraction mapping with an application, Axioms, 2021, 10, 316, 11 pp. |
[16] | F. A. Khan, Almost contractions under binary relations, Axioms, 2022, 11, 441, 7 pp. |
[17] | F. A. Khan, F. Sk, M. G. Alshehri, Q. H. Khan and A. Alam, Relational Meir-Keeler contractions and common fixed point theorems, J. Funct. Spaces, 2022, 2022, 3550923, 9 pp. |
[18] | J. Matkowski, Integrable solutions of functional equations, Dissertationes Math., 1975, 127, 68 pp. |
[19] | J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order., 2005, 22(3), 223–239. doi: 10.1007/s11083-005-9018-5 |
[20] | D. O'Regan and A. Petruşel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl., 2008, 341(2), 1241–1252. doi: 10.1016/j.jmaa.2007.11.026 |
[21] | M. Pǎcurar, Remark regarding two classes of almost contractions with unique fixed point, Creative Math. Inf., 2010, 19(2), 178–183. |
[22] | B. Samet and M. Turinici, Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications, Commun. Math. Anal., 2012, 13(2), 82–97. |
[23] | F. Sk, F. A. Khan, Q. H. Khan and A. Alam, Relation-preserving generalized nonlinear contractions and related fixed point theorems, AIMS Math., 2022, 7(4), 6634–6649. |