Citation: | Chong-Yang Yin, Xin-You Meng, Jia-Ming Zuo. MODELING THE EFFECTS OF VACCINATING STRATEGIES AND PERIODIC OUTBREAKS ON DENGUE IN SINGAPORE[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1284-1309. doi: 10.11948/20240205 |
Effective vaccination strategies can significantly reduce virus transmission, while periodic outbreaks require model prediction and early intervention to mitigate their impact. A novel dengue epidemic model with periodicity and vaccination is introduced in this paper. First, the positivity of solutions and the invariant set are given, and the basic reproduction number is obtained. Then, the disease-free periodic solution is globally asymptotically stable when the basic reproduction number is less than one, and periodic solution is consistent persistence when the basic reproduction number is more than one. Actual data are used to develop more scientific and reasonable prevention and control measures, reducing the transmission risk of dengue fever. Next, based on the dengue fever data in Singapore from 2014 to 2017, the best fitting parameters of such model are determined by using the Markov Chain Monte Carlo algorithm. Finally, some numerical simulations are carried out. These indicate that vaccination is of great significance to control the spread of disease.
[1] | M. Andraud, N. Hens and P. Beutels, A simple periodic-forced model for dengue fitted to incidence data in Singapore, Math. Biosci., 2013, 244(1), 22–28. doi: 10.1016/j.mbs.2013.04.001 |
[2] | G. Aronsson and R. B. Kellogg, On a differential equation arising from compartmental analysis, Math. Biosci., 1978, 38(1–2), 113–122. doi: 10.1016/0025-5564(78)90021-4 |
[3] | L. M. Cai, S. M. Guo, X. Li, et al., Global dynamics of a dengue epidemic mathematical model, Chaos Soliton. Fract., 2009, 42(4), 2297–2304. doi: 10.1016/j.chaos.2009.03.130 |
[4] | K. K. Chang, Q. M. Zhang and H. M. Yuan, Stationary distribution and control strategy of a stochastic dengue model with spatial diffusion, J. Appl. Anal. Comput., 2022, 12(1), 153–178. |
[5] | K. K. Chang, Z. Y. Zhang and G. Z. Liang, Dynamics analysis of a nonlocal diffusion dengue model, Sci. Rep., 2023, 13(1), 15239. doi: 10.1038/s41598-023-42440-3 |
[6] | S. Chen and M. H. Hsieh, Modeling the transmission dynamics of dengue fever: Implications of temperature effects, Sci. Total. Environ., 2012, 431, 385–391. doi: 10.1016/j.scitotenv.2012.05.012 |
[7] | Q. Cheng, Q. L. Jing, R. C. Spear, et al., Climate and the timing of imported cases as determinants of the dengue outbreak in Guangzhou, 2014: Evidence from a mathematical model, PLoS Neglect Trop. D., 2016, 10(2), e0004417. doi: 10.1371/journal.pntd.0004417 |
[8] | F. Coutinhoa, M. Burattinia, L. Lopeza, et al., Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue, Bull. Math. Biol., 2006, 68(8), 2263–2282. doi: 10.1007/s11538-006-9108-6 |
[9] | Diekmann O., Heesterbeek J. A. P., Metz J. A. J. . On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol., 1990, 28(4): 365-382. |
[10] | P. Van den Dreessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 2002, 180(1–2), 29–48. doi: 10.1016/S0025-5564(02)00108-6 |
[11] | L. Esteva and C. Vargas, Coexistence of different serotypes of dengue virus, J. Math. Biol., 2003, 46(1), 31. doi: 10.1007/s00285-002-0168-4 |
[12] | D. Fischer and S. Halstead, Observations related to pathogenesis of dengue hemorrhagic fever V. examination of agspecific sequential infection rates using a mathematical model, Yale. J. Biol. Med., 1970, 42(5), 329–349. |
[13] | S. M. Garba, A. B. Gumel and M. Bakar, Backward bifurcation in dengue transmission dynamics, Math. Biosci., 2008, 215(1), 11–25. doi: 10.1016/j.mbs.2008.05.002 |
[14] | H. Haario, M. Laine, A. Mira, et al., Dram: Efficient adaptive MCMC, Stat. Comput., 2006, 16(4), 339–354. doi: 10.1007/s11222-006-9438-0 |
[15] | H. Haario and S. J. Tamminen, An adaptive metropolis algorithm, Bernoulli., 2001, 7(2), 223–242. doi: 10.2307/3318737 |
[16] | M. G. Huang, L. C. Hu and B. Zheng, Comparing the efficiency of $Wolbachia$ driven $Aedes$ mosquito suppression strategies, J. Appl. Anal. Compt., 2019, 9(1), 211–230. |
[17] | H. F. Huo, K. D. Cao and H. Xiang, Modelling the effects of the vaccination on seasonal influenza in Gansu, China, J. Appl. Anal. Comput., 2022, 12(1), 407–435. |
[18] | H. Jagbir, J. S. Malik, S. K. Shashikantha, et al., Dengue vaccine: A valuable asset for the future, Human Vaccines, 2014, 10(8), 2245–2246. doi: 10.4161/hv.28953 |
[19] | C. Y. Kuo, W. W. Yang and E. C.-Y. Su, Improving dengue fever predictions in Taiwan based on feature selection and random forests, BMC Infect. Dis., 2024, 24(Suppl 2), 334. |
[20] | J. Kyle and E. Harris, Global spread and persistence of dengue, Ann. Rev. Microbiol., 2008, 62(1), 71–92. doi: 10.1146/annurev.micro.62.081307.163005 |
[21] | M. Li, G. Sun, Y. Laith, et al., The driving force for 2014 dengue outbreak in Guangdong, China, Plos One, 2016, 11(11), e0166211. doi: 10.1371/journal.pone.0166211 |
[22] | S. H. Ma, T. Tian and H. F. Huo, Global stability and optimal control of an age-structured $SVEIR$ epidemic model with waning immunity and relapses, J. Math. Biol., 2024, 89(3), 1–38. |
[23] | P. Magal and G. Webb, The parameter identification problem for SIR epidemic models: Identifying unreported cases, J. Math. Biol., 2018, 77(10), 1–20. |
[24] | S. Marino, I. B. Hogue and C. J. Ray, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 2008, 254(1), 178–196. doi: 10.1016/j.jtbi.2008.04.011 |
[25] | A. Li-Martín, R. Reyes-Carreto and C. Vargas-De-León, Dynamics of a dengue disease transmission model with two-stage structure in the human population, Math. Biosci. Eng., 2023, 20(1), 955–974. |
[26] | X. Y. Meng and L. Xiao, Hopf bifurcation and Turing instability of a delayed diffusive zooplankton-phytoplankton model with hunting cooperation, Int. J. Bifurcat. Chaos, 2024, 34(7), 106–123. |
[27] | X. Y. Meng and C. Y. Yin, Dynamics of a dengue fever model with unreported cases and asymptomatic infected classes in Singapore, 2020, J. Appl. Anal. Comput., 2023, 13(2), 782–808. |
[28] |
Ministry of Health Singapore, |
[29] | S. S. Musa, S. Zhao, H. Chan, et al., A mathematical model to study the 2014-2015 large-scale dengue epidemics in Kaohsiung and Tainan cities in Taiwan, China, Math. Biosci. Eng., 2019, 16(5), 3841–3863. |
[30] | J. G. Rigau-Perez, G. G. Clark, D. J. Gubler, et al., Dengue and dengue haemorrhagic fever, Lancet, 1998, 352(9132), 971–977. |
[31] | C. Pratchaya, T. I. Ming and P. Puntani, SIR model for dengue disease with effect of dengue vaccination, Comput. Math. Meth. Med., 2018, 2018, 1–14. |
[32] | M. S. Rahman, F. Mehejabin, M. Arafat. Rahman, et al., A case-control study to determine the risk factors of dengue fever in Chattogram, Bangladesh, Pub. Heal. Prac., 2022, 4, 100288. |
[33] | S. Shah, R. Tyagi and P. Shah, Case study review on dengue fever: An emerging public health issue, Int. J. Per. Pub. Heal., 2018, 2(1), 1–7. |
[34] | E. Shim, Dengue dynamics and vaccine cost-effectiveness analysis in the Philippines, Am. J. Trop. Med. Hyg., 2016, 1137–1147. |
[35] | J. F. Siler, M. W. Hall and A. P. Hitchens, Dengue: Its history, epidemiology, mechanism of transmission, etiology, clinical manifestations, immunity, and prevention, Philipp. J. Sci., 1926, 29, 1–302. |
[36] | D. C. Speirs, H. L. Smith and P. Waltman, The theory of the chemostat: Dynamics of microbial competition, J. Appl. Ecol., 1996, 33(3), 651. |
[37] | W. D. Wang and X. Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equ., 2008, 20(3), 699–717. |
[38] | Y. W. Wang, C. L. Li, S. Zhao, et al., Projection of dengue fever transmissibility under climate change in South and Southeast Asian countries, PLoS Neglect Trop. D., 2024, 18(4), e0012158. |
[39] |
Weekly Infectious Diseases Bulletin, |
[40] | P. Wu, J. Lay, H. Guo, et al., Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan, Sci. Total Environ., 2009, 407(7), 2224–2233. |
[41] | L. Xue, X. Ren, F. Magpantay, et al., Optimal control of mitigation strategies for dengue virus transmission, Bull. Math. Biol., 2021, 83(2), s11538. |
[42] | Y. J. Zha and W. H. Jiang, Global dynamics and asymptotic profiles for a degenerate dengue fever model in heterogeneous environment, J. Differ. Equations, 2023, 348, 278–319. |
[43] | F. Zhang and X. Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 2007, 325(1), 496–516. |
[44] | X. H. Zhang, X. N. Liu, Y. Z. Li, et al., Modelling the effects of Wolbachia-carrying male augmentation and mating competition on the control of dengue fever, J. Dyn. Differ. Equ., 2023, 1–41. |
[45] | X. Q. Zhao, Dynamical Systems in Population Biology, Springer, Switzerland, 2017. |
[46] | B. Zheng, W. Guo, L. Hu, et al., Complex Wolbachia infection dynamics in mosquitoes with imperfect maternal transmission, Math. Biosci. Eng., 2018, 15(2), 523–541. |
[47] | Z. C. Zhu, X. M. Feng and L. C. Hu, Global dynamics of a mosquito population suppression model under a periodic release strategy, J. Appl. Anal. Comput., 2023, 13(4), 2297–2314. |
Flowchart of the dengue epidemic model.
The global stability of the disease-free periodic solution. (a)
The global stability of the disease-free periodic solution. (a)
The fitting results from January 2014 to April 2017. (a) The number of new cases reported, (b) The number of cumulative reported.
The basic reproduction number of
Plot of the output (1000 runs) of model (4.1). The ordinate represents variable I(t), and the abscissa represents time (weeks).
The sensitivity of the parameters changes as the dynamics of model (4.1) progress.
P values of each parameter on the 80th days. (a)
The impact of infection rates
The number of the reported infected individuals with different vaccination. (a) 50%, (b) 80%.