2025 Volume 15 Issue 3
Article Contents

Chong-Yang Yin, Xin-You Meng, Jia-Ming Zuo. MODELING THE EFFECTS OF VACCINATING STRATEGIES AND PERIODIC OUTBREAKS ON DENGUE IN SINGAPORE[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1284-1309. doi: 10.11948/20240205
Citation: Chong-Yang Yin, Xin-You Meng, Jia-Ming Zuo. MODELING THE EFFECTS OF VACCINATING STRATEGIES AND PERIODIC OUTBREAKS ON DENGUE IN SINGAPORE[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1284-1309. doi: 10.11948/20240205

MODELING THE EFFECTS OF VACCINATING STRATEGIES AND PERIODIC OUTBREAKS ON DENGUE IN SINGAPORE

  • Author Bio: Email: 185708319@qq.com(C.-Y. Yin); Email: 2301671250@qq.com(J.-M. Zuo)
  • Corresponding author: Email: xymeng@lut.edu.cn(X.-Y. Meng) 
  • Fund Project: This work is supported by the National Natural Science Foundation of China (12161054 and 12361101), the Doctoral Foundation of Lanzhou University of Technology, and the HongLiu First-class Disciplines Development Program of Lanzhou University of Technology
  • Effective vaccination strategies can significantly reduce virus transmission, while periodic outbreaks require model prediction and early intervention to mitigate their impact. A novel dengue epidemic model with periodicity and vaccination is introduced in this paper. First, the positivity of solutions and the invariant set are given, and the basic reproduction number is obtained. Then, the disease-free periodic solution is globally asymptotically stable when the basic reproduction number is less than one, and periodic solution is consistent persistence when the basic reproduction number is more than one. Actual data are used to develop more scientific and reasonable prevention and control measures, reducing the transmission risk of dengue fever. Next, based on the dengue fever data in Singapore from 2014 to 2017, the best fitting parameters of such model are determined by using the Markov Chain Monte Carlo algorithm. Finally, some numerical simulations are carried out. These indicate that vaccination is of great significance to control the spread of disease.

    MSC: 34D05, 34D20, 34D23, 49J15
  • 加载中
  • [1] M. Andraud, N. Hens and P. Beutels, A simple periodic-forced model for dengue fitted to incidence data in Singapore, Math. Biosci., 2013, 244(1), 22–28. doi: 10.1016/j.mbs.2013.04.001

    CrossRef Google Scholar

    [2] G. Aronsson and R. B. Kellogg, On a differential equation arising from compartmental analysis, Math. Biosci., 1978, 38(1–2), 113–122. doi: 10.1016/0025-5564(78)90021-4

    CrossRef Google Scholar

    [3] L. M. Cai, S. M. Guo, X. Li, et al., Global dynamics of a dengue epidemic mathematical model, Chaos Soliton. Fract., 2009, 42(4), 2297–2304. doi: 10.1016/j.chaos.2009.03.130

    CrossRef Google Scholar

    [4] K. K. Chang, Q. M. Zhang and H. M. Yuan, Stationary distribution and control strategy of a stochastic dengue model with spatial diffusion, J. Appl. Anal. Comput., 2022, 12(1), 153–178.

    Google Scholar

    [5] K. K. Chang, Z. Y. Zhang and G. Z. Liang, Dynamics analysis of a nonlocal diffusion dengue model, Sci. Rep., 2023, 13(1), 15239. doi: 10.1038/s41598-023-42440-3

    CrossRef Google Scholar

    [6] S. Chen and M. H. Hsieh, Modeling the transmission dynamics of dengue fever: Implications of temperature effects, Sci. Total. Environ., 2012, 431, 385–391. doi: 10.1016/j.scitotenv.2012.05.012

    CrossRef Google Scholar

    [7] Q. Cheng, Q. L. Jing, R. C. Spear, et al., Climate and the timing of imported cases as determinants of the dengue outbreak in Guangzhou, 2014: Evidence from a mathematical model, PLoS Neglect Trop. D., 2016, 10(2), e0004417. doi: 10.1371/journal.pntd.0004417

    CrossRef Google Scholar

    [8] F. Coutinhoa, M. Burattinia, L. Lopeza, et al., Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue, Bull. Math. Biol., 2006, 68(8), 2263–2282. doi: 10.1007/s11538-006-9108-6

    CrossRef Google Scholar

    [9] Diekmann O., Heesterbeek J. A. P., Metz J. A. J. . On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol., 1990, 28(4): 365-382.

    Google Scholar

    [10] P. Van den Dreessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 2002, 180(1–2), 29–48. doi: 10.1016/S0025-5564(02)00108-6

    CrossRef Google Scholar

    [11] L. Esteva and C. Vargas, Coexistence of different serotypes of dengue virus, J. Math. Biol., 2003, 46(1), 31. doi: 10.1007/s00285-002-0168-4

    CrossRef Google Scholar

    [12] D. Fischer and S. Halstead, Observations related to pathogenesis of dengue hemorrhagic fever V. examination of agspecific sequential infection rates using a mathematical model, Yale. J. Biol. Med., 1970, 42(5), 329–349.

    Google Scholar

    [13] S. M. Garba, A. B. Gumel and M. Bakar, Backward bifurcation in dengue transmission dynamics, Math. Biosci., 2008, 215(1), 11–25. doi: 10.1016/j.mbs.2008.05.002

    CrossRef Google Scholar

    [14] H. Haario, M. Laine, A. Mira, et al., Dram: Efficient adaptive MCMC, Stat. Comput., 2006, 16(4), 339–354. doi: 10.1007/s11222-006-9438-0

    CrossRef Google Scholar

    [15] H. Haario and S. J. Tamminen, An adaptive metropolis algorithm, Bernoulli., 2001, 7(2), 223–242. doi: 10.2307/3318737

    CrossRef Google Scholar

    [16] M. G. Huang, L. C. Hu and B. Zheng, Comparing the efficiency of $Wolbachia$ driven $Aedes$ mosquito suppression strategies, J. Appl. Anal. Compt., 2019, 9(1), 211–230.

    Google Scholar

    [17] H. F. Huo, K. D. Cao and H. Xiang, Modelling the effects of the vaccination on seasonal influenza in Gansu, China, J. Appl. Anal. Comput., 2022, 12(1), 407–435.

    Google Scholar

    [18] H. Jagbir, J. S. Malik, S. K. Shashikantha, et al., Dengue vaccine: A valuable asset for the future, Human Vaccines, 2014, 10(8), 2245–2246. doi: 10.4161/hv.28953

    CrossRef Google Scholar

    [19] C. Y. Kuo, W. W. Yang and E. C.-Y. Su, Improving dengue fever predictions in Taiwan based on feature selection and random forests, BMC Infect. Dis., 2024, 24(Suppl 2), 334.

    Google Scholar

    [20] J. Kyle and E. Harris, Global spread and persistence of dengue, Ann. Rev. Microbiol., 2008, 62(1), 71–92. doi: 10.1146/annurev.micro.62.081307.163005

    CrossRef Google Scholar

    [21] M. Li, G. Sun, Y. Laith, et al., The driving force for 2014 dengue outbreak in Guangdong, China, Plos One, 2016, 11(11), e0166211. doi: 10.1371/journal.pone.0166211

    CrossRef Google Scholar

    [22] S. H. Ma, T. Tian and H. F. Huo, Global stability and optimal control of an age-structured $SVEIR$ epidemic model with waning immunity and relapses, J. Math. Biol., 2024, 89(3), 1–38.

    Google Scholar

    [23] P. Magal and G. Webb, The parameter identification problem for SIR epidemic models: Identifying unreported cases, J. Math. Biol., 2018, 77(10), 1–20.

    Google Scholar

    [24] S. Marino, I. B. Hogue and C. J. Ray, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 2008, 254(1), 178–196. doi: 10.1016/j.jtbi.2008.04.011

    CrossRef Google Scholar

    [25] A. Li-Martín, R. Reyes-Carreto and C. Vargas-De-León, Dynamics of a dengue disease transmission model with two-stage structure in the human population, Math. Biosci. Eng., 2023, 20(1), 955–974.

    Google Scholar

    [26] X. Y. Meng and L. Xiao, Hopf bifurcation and Turing instability of a delayed diffusive zooplankton-phytoplankton model with hunting cooperation, Int. J. Bifurcat. Chaos, 2024, 34(7), 106–123.

    Google Scholar

    [27] X. Y. Meng and C. Y. Yin, Dynamics of a dengue fever model with unreported cases and asymptomatic infected classes in Singapore, 2020, J. Appl. Anal. Comput., 2023, 13(2), 782–808.

    Google Scholar

    [28] Ministry of Health Singapore, http://www.moh.gov.sg., April, 2024.

    Google Scholar

    [29] S. S. Musa, S. Zhao, H. Chan, et al., A mathematical model to study the 2014-2015 large-scale dengue epidemics in Kaohsiung and Tainan cities in Taiwan, China, Math. Biosci. Eng., 2019, 16(5), 3841–3863.

    Google Scholar

    [30] J. G. Rigau-Perez, G. G. Clark, D. J. Gubler, et al., Dengue and dengue haemorrhagic fever, Lancet, 1998, 352(9132), 971–977.

    Google Scholar

    [31] C. Pratchaya, T. I. Ming and P. Puntani, SIR model for dengue disease with effect of dengue vaccination, Comput. Math. Meth. Med., 2018, 2018, 1–14.

    Google Scholar

    [32] M. S. Rahman, F. Mehejabin, M. Arafat. Rahman, et al., A case-control study to determine the risk factors of dengue fever in Chattogram, Bangladesh, Pub. Heal. Prac., 2022, 4, 100288.

    Google Scholar

    [33] S. Shah, R. Tyagi and P. Shah, Case study review on dengue fever: An emerging public health issue, Int. J. Per. Pub. Heal., 2018, 2(1), 1–7.

    Google Scholar

    [34] E. Shim, Dengue dynamics and vaccine cost-effectiveness analysis in the Philippines, Am. J. Trop. Med. Hyg., 2016, 1137–1147.

    Google Scholar

    [35] J. F. Siler, M. W. Hall and A. P. Hitchens, Dengue: Its history, epidemiology, mechanism of transmission, etiology, clinical manifestations, immunity, and prevention, Philipp. J. Sci., 1926, 29, 1–302.

    Google Scholar

    [36] D. C. Speirs, H. L. Smith and P. Waltman, The theory of the chemostat: Dynamics of microbial competition, J. Appl. Ecol., 1996, 33(3), 651.

    Google Scholar

    [37] W. D. Wang and X. Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equ., 2008, 20(3), 699–717.

    Google Scholar

    [38] Y. W. Wang, C. L. Li, S. Zhao, et al., Projection of dengue fever transmissibility under climate change in South and Southeast Asian countries, PLoS Neglect Trop. D., 2024, 18(4), e0012158.

    Google Scholar

    [39] Weekly Infectious Diseases Bulletin, http://www.moh.gov.sg., April, 2024.

    Google Scholar

    [40] P. Wu, J. Lay, H. Guo, et al., Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan, Sci. Total Environ., 2009, 407(7), 2224–2233.

    Google Scholar

    [41] L. Xue, X. Ren, F. Magpantay, et al., Optimal control of mitigation strategies for dengue virus transmission, Bull. Math. Biol., 2021, 83(2), s11538.

    Google Scholar

    [42] Y. J. Zha and W. H. Jiang, Global dynamics and asymptotic profiles for a degenerate dengue fever model in heterogeneous environment, J. Differ. Equations, 2023, 348, 278–319.

    Google Scholar

    [43] F. Zhang and X. Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 2007, 325(1), 496–516.

    Google Scholar

    [44] X. H. Zhang, X. N. Liu, Y. Z. Li, et al., Modelling the effects of Wolbachia-carrying male augmentation and mating competition on the control of dengue fever, J. Dyn. Differ. Equ., 2023, 1–41.

    Google Scholar

    [45] X. Q. Zhao, Dynamical Systems in Population Biology, Springer, Switzerland, 2017.

    Google Scholar

    [46] B. Zheng, W. Guo, L. Hu, et al., Complex Wolbachia infection dynamics in mosquitoes with imperfect maternal transmission, Math. Biosci. Eng., 2018, 15(2), 523–541.

    Google Scholar

    [47] Z. C. Zhu, X. M. Feng and L. C. Hu, Global dynamics of a mosquito population suppression model under a periodic release strategy, J. Appl. Anal. Comput., 2023, 13(4), 2297–2314.

    Google Scholar

Figures(10)  /  Tables(2)

Article Metrics

Article views(378) PDF downloads(221) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint