2025 Volume 15 Issue 2
Article Contents

Jing Zhang, Zenggui Wang. LIE SYMMETRY AND EXACT SOLUTIONS FOR THE POROUS MEDIUM EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 934-950. doi: 10.11948/20240212
Citation: Jing Zhang, Zenggui Wang. LIE SYMMETRY AND EXACT SOLUTIONS FOR THE POROUS MEDIUM EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 934-950. doi: 10.11948/20240212

LIE SYMMETRY AND EXACT SOLUTIONS FOR THE POROUS MEDIUM EQUATION

  • This paper aims to study a (2+1)-dimensional Biological population model with the porous medium by Lie symmetry method. By using commutation tables, the one-dimensional optimal subalgebras for the porous medium equation is given. Group invariant solutions of this model are constructed by the reduction equations. Further, the dynamic behavior of the model graphically is presented.

    MSC: 22E50, 22E60, 35K55
  • 加载中
  • [1] M. A. Abdou and A. A. Soliman, Modified extended tanh-function method and its application on nonlinear physical equations, Physics Letters A, 2006, 353(6), 487–492. doi: 10.1016/j.physleta.2006.01.013

    CrossRef Google Scholar

    [2] R. Al-Deiakeh, O. A. Arqub, M. Al-Smadi, et al., Lie symmetry analysis, explicit solutions, and conservation laws of the time-fractional Fisher equation in two-dimensional space, Journal of Ocean Engineering and Science, 2022, 7(4), 345–352. doi: 10.1016/j.joes.2021.09.005

    CrossRef Google Scholar

    [3] J. Bear, Dynamics of Fluids in Porous Media, Courier Corporation, New York, 2013.

    Google Scholar

    [4] N. Benoudina, Y. Zhang and C. M. Khalique, Lie symmetry analysis, optimal system, new solitary wave solutions and conservation laws of the Pavlov equation, Communications in Nonlinear Science and Numerical Simulation, 2021. DOI: 10.1016/j.cnsns.2020.105560.

    CrossRef Google Scholar

    [5] B. Ghanbari, S. Kumar, M. Niwas, et al., The Lie symmetry analysis and exact Jacobi elliptic solutions for the KawaharašCKdV type equations, Results in Physics, 2021. DOI: 10.1016/j.rinp.2021.104006.

    CrossRef Google Scholar

    [6] B. Ghanbari, S. Kumar, M. Niwas, et al., The Lie symmetry analysis and exact Jacobi elliptic solutions for the Kawahara-KdV type equations, Results in Physics, 2021. DOI: 10.1016/j.rinp.2021.104006.

    CrossRef Google Scholar

    [7] W. S. C. Gurney and R. M. Nisbet, The regulation of inhomogeneous populations, Journal of Theoretical Biology, 1975, 52(2), 441–457. doi: 10.1016/0022-5193(75)90011-9

    CrossRef Google Scholar

    [8] M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations, Mathematical Biosciences, 1977, 33(1–2), 35–49. doi: 10.1016/0025-5564(77)90062-1

    CrossRef Google Scholar

    [9] J. Guy, Lagrange characteristic method for solving a class of nonlinear partial differential equations of fractional order, Applied Mathematics Letters, 2006, 19(9), 873–880. doi: 10.1016/j.aml.2005.10.016

    CrossRef Google Scholar

    [10] M. P. Hassell, Foraging strategies, population models and biological control: A case study, The Journal of Animal Ecology, 1980, 49(2), 603–628. doi: 10.2307/4267

    CrossRef Google Scholar

    [11] K. J. Holzinger and F. Swineford, The bi-factor method, Psychometrika, 1937, 2(1), 41–54. doi: 10.1007/BF02287965

    CrossRef Google Scholar

    [12] A. J. M. Jawad, M. D. Petković and A. Biswas, Modified simple equation method for nonlinear evolution equations, Applied Mathematics and Computation, 2010, 217(2), 869–877. doi: 10.1016/j.amc.2010.06.030

    CrossRef Google Scholar

    [13] R. Jiwari, V. Kumar and S. Singh, Lie group analysis, exact solutions and conservation laws to compressible isentropic Navier-Stokes equation, Engineering with Computers, 2022, 38(3), 2027–2036. doi: 10.1007/s00366-020-01175-9

    CrossRef Google Scholar

    [14] G. Khan, M. Safdar, S. Taj, et al., Heat transfer in MHD thin film flow with concentration using lie point symmetry approach, Case Studies in Thermal Engineering, 2023. DOI: 10.1016/j.csite.2023.103238.

    CrossRef Google Scholar

    [15] M. M. A. Khater, Nonlinear biological population model; Computational and numerical investigations, Chaos, Solitons & Fractals, 2022. DOI: 10.1016/j.chaos.2022.112388.

    Google Scholar

    [16] M. D. Kumar, C. S. K. Raju, M. Alshehri, et al., Dual dynamical jumps on Lie group analysis of hydro-magnetic flow in a suspension of different shapes of water-based hybrid solid particles with Fourier flux, Arabian Journal of Chemistry, 2023. DOI: 10.1016/j.arabjc.2023.104889.

    CrossRef Google Scholar

    [17] S. Kumar and A. Kumar, Lie symmetry reductions and group invariant solutions of (2+1)-dimensional modified Veronese web equation, Nonlinear Dynamics, 2019, 98(3), 1891–1903. doi: 10.1007/s11071-019-05294-x

    CrossRef Google Scholar

    [18] S. Kumar, D. Kumar and A. Kumar, Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation, Chaos, Solitons & Fractals, 2021. DOI: 10.1016/j.chaos.2020.110507.

    Google Scholar

    [19] S. Kumar and S. Rani, Lie symmetry analysis, group-invariant solutions and dynamics of solitons to the (2+1)-dimensional Bogoyavlenskii-Schieff equation, Pramana, 2021, 95(2), 51. doi: 10.1007/s12043-021-02082-4

    CrossRef Google Scholar

    [20] V. L. de Lima, M. Iori and F. K. Miyazawa, Exact solution of network flow models with strong relaxations, Mathematical Programming, 2023, 197(2), 813–846. doi: 10.1007/s10107-022-01785-9

    CrossRef Google Scholar

    [21] J. Liu and K. Yang, The extended F-expansion method and exact solutions of nonlinear PDEs, Chaos, Solitons & Fractals, 2004, 22(1), 111–121.

    Google Scholar

    [22] B. Lu, The first integral method for some time fractional differential equations, Journal of Mathematical Analysis and Applications, 2012, 395(2), 684–693. doi: 10.1016/j.jmaa.2012.05.066

    CrossRef Google Scholar

    [23] Y. G. Lu, Hölder estimate of solutions of biological population equations, Applied Mathematics Letters, 2000. DOI: 10.1016/S0893-9659(00)00066-5.

    CrossRef Google Scholar

    [24] S. D. Maharaj, N. Naidoo, G. Amery, et al., Lie group analysis of the general Karmarkar condition, The European Physical Journal C, 2023, 83(4), 333. doi: 10.1140/epjc/s10052-023-11513-y

    CrossRef Google Scholar

    [25] P. B. McEvoy and E. M. Coombs, Biological control of plant invaders: Regional patterns, field experiments, and structured population models, Ecological Applications, 1999, 9(2), 387–401. doi: 10.1890/1051-0761(1999)009[0387:BCOPIR]2.0.CO;2

    CrossRef Google Scholar

    [26] K. S. Nisar, A. Ciancio, K. K. Ali, et al., On beta-time fractional biological population model with abundant solitary wave structures, Alexandria Engineering Journal, 2022, 61(3), 1996–2008. doi: 10.1016/j.aej.2021.06.106

    CrossRef Google Scholar

    [27] A. Okubo, Diffusion and Ecological Problems: Mathematical Models, Biomath, New York, 1980.

    Google Scholar

    [28] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer Science & Business Media, New York, 1993.

    Google Scholar

    [29] M. S. Osman, D. Baleanu, A. R. Adem, et al., Double-wave solutions and Lie symmetry analysis to the (2+1)-dimensional coupled Burgers equations, Chinese Journal of Physics, 2020. DOI: 10.1016/j.cjph.2019.11.005.

    CrossRef Google Scholar

    [30] A. Paliathanasis, R. S. Bogadi and M. Govender, Lie symmetry approach to the time-dependent Karmarkar condition, The European Physical Journal C, 2022, 82(11), 987. doi: 10.1140/epjc/s10052-022-10929-2

    CrossRef Google Scholar

    [31] S. Sarwar, M. A. Zahid and S. Iqbal, Mathematical study of fractional-order biological population model using optimal homotopy asymptotic method, International Journal of Biomathematics, 2016, 9(06), 1650081. doi: 10.1142/S1793524516500819

    CrossRef Google Scholar

    [32] S. Shagolshem, B. Bira and D. Zeidan, Optimal subalgebras and conservation laws with exact solutions for biological population model, Chaos, Solitons & Fractals, 2023. DOI: 10.1016/j.chaos.2022.112985.

    Google Scholar

    [33] F. Shakeri and M. Dehghan, Numerical solution of a biological population model using He's variational iteration method, Computers & Mathematics with Applications, 2007, 54(7–8), 1197–1209.

    Google Scholar

    [34] A. K. Sharma and R. Arora, Study of optimal subalgebras, invariant solutions, and conservation laws for a Verhulst biological population model, Studies in Applied Mathematics, 2024. DOI: 10.1111/sapm.12692.

    CrossRef Google Scholar

    [35] A. Silem and J. Lin, Exact solutions for a variable-coefficients nonisospectral nonlinear Schr$\ddot{o}$dinger equation via Wronskian technique, Applied Mathematics Letters, 2023. DOI: 10.1016/j.aml.2022.108397.

    CrossRef Google Scholar

    [36] V. K. Srivastava, S. Kumar, M. K. Awasthi, et al., Two-dimensional time fractional-order biological population model and its analytical solution, Egyptian Journal of Basic and Applied Sciences, 2014, 1(1), 71–76.

    Google Scholar

    [37] M. Usman, A. Hussain, F. D. Zaman, et al., Group invariant solutions of wave propagation in phononic materials based on the reduced micromorphic model via optimal system of Lie subalgebra, Results in Physics, 2023. DOI: 10.1016/j.rinp.2023.106413.

    CrossRef Google Scholar

    [38] M. Usman, A. Hussain, F. D. Zaman, et al., Symmetry analysis and exact Jacobi elliptic solutions for the nonlinear couple Drinfeld Sokolov Wilson dynamical system arising in shallow water waves, Results in Physics, 2023. DOI: 10.1016/j.rinp.2023.106613.

    CrossRef Google Scholar

    [39] V. E. Zakharov, The Inverse Scattering Method, Solitons, Berlin, Heidelberg, Springer Berlin Heidelberg, 1980.

    Google Scholar

    [40] H. Zhang and W. X. Ma, Extended transformed rational function method and applications to complexiton solutions, Applied Mathematics and Computation, 2014. DOI: 10.1016/j.amc.2013.12.156.

    CrossRef Google Scholar

    [41] L. W. Zhang, Y. J. Deng and K. M. Liew, An improved element-free Galerkin method for numerical modeling of the biological population problems, Engineering Analysis with Boundary Elements, 2014. DOI: 10.1016/j.enganabound.2013.12.008.

    CrossRef Google Scholar

    [42] Z. Y. Zhang and G. F. Li, Lie symmetry analysis and exact solutions of the time-fractional biological population model, Physica A: Statistical Mechanics and Its Applications, 2020. DOI: 10.1016/j.physa.2019.123134.

    CrossRef Google Scholar

    [43] Z. Y. Zhang, X. Yong and Y. Chen, Symmetry analysis for whitham-Broer-Kaup equations, Journal of Nonlinear Mathematical Physics, 2008, 15(4), 383–397.

    Google Scholar

Figures(2)  /  Tables(1)

Article Metrics

Article views(346) PDF downloads(163) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint