2025 Volume 15 Issue 2
Article Contents

Hong-Yu Li, Xin-Hui Shao. ON WEIGHTED AVERAGE FAST BLOCK KACZMARZ METHODS FOR SOLVING LARGE CONSISTENT LINEAR SYSTEMS[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 915-933. doi: 10.11948/20240208
Citation: Hong-Yu Li, Xin-Hui Shao. ON WEIGHTED AVERAGE FAST BLOCK KACZMARZ METHODS FOR SOLVING LARGE CONSISTENT LINEAR SYSTEMS[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 915-933. doi: 10.11948/20240208

ON WEIGHTED AVERAGE FAST BLOCK KACZMARZ METHODS FOR SOLVING LARGE CONSISTENT LINEAR SYSTEMS

  • Author Bio: Email: leehongyu111@163.com(H.-Y. Li)
  • Corresponding author: Email: xinhui1002@126.com(X.-H. Shao)
  • Fund Project: The authors were supported by Fundamental Research Funds for the Central Universities (N2224005-1)
  • To solve large consistent linear systems, a weighted average fast block Kaczmarz (WAFBK) method is proposed, which is based on the ideas of greedy distance and weighted average. This method does not require the calculation of pseudoinverse of submatrices. Furthermore, we provide a detailed analysis of the convergence properties of various methods, corresponding to four different weights used in the selection probability criterion. And it has been proven that WAFBK-type methods converge to the unique least-norm solutions of linear systems. Numerical results confirm the effectiveness of the WAFBK-type methods and demonstrate their ability to accelerate the convergence rate of the fast deterministic block Kaczmarz method.

    MSC: 65F10, 65F20, 15A06
  • 加载中
  • [1] Z. Bai and L. Wang, On convergence rates of Kaczmarz-type methods with different selection rules of working rows, Appl. Numer. Math., 2023, 186, 289-319. doi: 10.1016/j.apnum.2023.01.013

    CrossRef Google Scholar

    [2] Z. Bai and W. Wu, On greedy randomized Kaczmarz method for solving large sparse linear systems, SIAM J. Sci. Comput., 2018, 40(1), A592-A606. doi: 10.1137/17M1137747

    CrossRef Google Scholar

    [3] Z. Bai and W. Wu, On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems, Appl. Math. Lett., 2018, 83, 21-26. doi: 10.1016/j.aml.2018.03.008

    CrossRef Google Scholar

    [4] Z. Bai and W. Wu, On greedy randomized augmented Kaczmarz method for solving large sparse inconsistent linear systems, SIAM J. Sci. Comput., 2021, 43(6), A3892-A3911. doi: 10.1137/20M1352235

    CrossRef Google Scholar

    [5] J. Chen and Z. Huang, On a fast deterministic block Kaczmarz method for solving large-scale linear systems, Numer. Algorithms, 2022, 89(3), 1007-1029. doi: 10.1007/s11075-021-01143-4

    CrossRef Google Scholar

    [6] T. A. Davis and Y. Hu, The university of Florida sparse matrix collection, ACM Trans. Math. Softw., 2011, 38(1), 1-25.

    Google Scholar

    [7] K. Du, W. Si and X. Sun, Randomized extended average block Kaczmarz for solving least squares, SIAM J. Sci. Comput., 2020, 42(6), A3541-A3559. doi: 10.1137/20M1312629

    CrossRef Google Scholar

    [8] J. M. Elble, N. V. Sahinidis and P. Vouzis, GPU computing with Kaczmarz’s and other iterative algorithms for linear systems, Parallel Comput., 2010, 36(5), 215-231.

    Google Scholar

    [9] T. Elfving, Block-iterative methods for consistent and inconsistent linear equations, Numer. Math., 1980, 35(1), 1-12. doi: 10.1007/BF01396365

    CrossRef Google Scholar

    [10] R. M. Gower and P. Richtárik, Randomized iterative methods for linear systems, SIAM J. Matrix Anal. Appl., 2015, 36(4), 1660-1690. doi: 10.1137/15M1025487

    CrossRef Google Scholar

    [11] G. T. Herman and R. Davidi, Image reconstruction from a small number of projections, Inverse Probl., 2008, 24(4), 045011. doi: 10.1088/0266-5611/24/4/045011

    CrossRef Google Scholar

    [12] S. Kaczmarz, Angenäherte Auflösung von systemen linearer Gleichungen, Bull. Int. Acad. Pol. Sci. Lett. A, 1937, 35, 355-357.

    Google Scholar

    [13] S. Lee and H. J. Kim, Noise properties of reconstructed images in a kilo-voltage on-board imaging system with iterative reconstruction techniques: A phantom study, Phys. Med., 2014, 30(3), 365-373. doi: 10.1016/j.ejmp.2013.11.003

    CrossRef Google Scholar

    [14] F. Natterer, The Mathematics of Computerized Tomography, SIAM, Philadelphia, PA, 2001.

    Google Scholar

    [15] I. Necoara, Faster randomized block Kaczmarz algorithms, SIAM J. Matrix Anal. Appl., 2019, 40(4), 1425-1452. doi: 10.1137/19M1251643

    CrossRef Google Scholar

    [16] D. Needell and J. A. Tropp, Paved with good intentions: Analysis of a randomized block Kaczmarz method, Linear Algebra Appl., 2014, 441, 199-221. doi: 10.1016/j.laa.2012.12.022

    CrossRef Google Scholar

    [17] D. Needell, R. Zhao and A. Zouzias, Randomized block Kaczmarz method with projection for solving least squares, Linear Algebra Appl., 2015, 484, 322-343. doi: 10.1016/j.laa.2015.06.027

    CrossRef Google Scholar

    [18] Y. Niu and B. Zheng, A greedy block Kaczmarz algorithm for solving large-scale linear systems, Appl. Math. Lett., 2020, 104, 106294. doi: 10.1016/j.aml.2020.106294

    CrossRef Google Scholar

    [19] F. Pasqualetti, R. Carli and F. Bullo, Distributed estimation via iterative projections with application to power network monitoring, Automatica J. IFAC, 2012, 48(5), 747-758. doi: 10.1016/j.automatica.2012.02.025

    CrossRef Google Scholar

    [20] C. Popa and R. Zdunek, Kaczmarz extended algorithm for tomographic image reconstruction from limited data, Math. Comput. Simulation, 2004, 65(6), 579-598. doi: 10.1016/j.matcom.2004.01.021

    CrossRef Google Scholar

    [21] T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm with exponential convergence, J. Fourier Anal. Appl., 2009, 15(2), 262-278. doi: 10.1007/s00041-008-9030-4

    CrossRef Google Scholar

    [22] L. Tondji and D. A. Lorenz, Faster randomized block sparse Kaczmarz by averaging, Numer. Algorithms, 2023, 93(4), 1417-1451. doi: 10.1007/s11075-022-01473-x

    CrossRef Google Scholar

    [23] Q. Wang, W. Li and W. Bao, Nonlinear Kaczmarz algorithms and their convergence, J. Comput. Appl. Math., 2022, 399, 113720. doi: 10.1016/j.cam.2021.113720

    CrossRef Google Scholar

    [24] A. Xiao, J. Yin and N. Zheng, On fast greedy block Kaczmarz methods for solving large consistent linear systems, Comput. Appl. Math., 2023, 42(3), 119. doi: 10.1007/s40314-023-02232-x

    CrossRef Google Scholar

    [25] J. Zhang, A new greedy Kaczmarz algorithm for the solution of very large linear systems, Appl. Math. Lett., 2019, 91, 207-212. doi: 10.1016/j.aml.2018.12.022

    CrossRef Google Scholar

    [26] A. Zouzias and N. M. Freris, Randomized extended Kaczmarz for solving least squares, SIAM J. Matrix Anal. Appl., 2013, 34(2), 773-793. doi: 10.1137/120889897

    CrossRef Google Scholar

Figures(6)  /  Tables(8)

Article Metrics

Article views(389) PDF downloads(226) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint