2025 Volume 15 Issue 1
Article Contents

Junwei Zhu, Lina Gu, Shengbiao Li. FINITE SPECTRUM OF STURM-LIOUVILLE PROBLEMS WITH $ N $ TRANSMISSION CONDITIONS AND SPECTRAL PARAMETERS IN THE BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 605-623. doi: 10.11948/20240213
Citation: Junwei Zhu, Lina Gu, Shengbiao Li. FINITE SPECTRUM OF STURM-LIOUVILLE PROBLEMS WITH $ N $ TRANSMISSION CONDITIONS AND SPECTRAL PARAMETERS IN THE BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 605-623. doi: 10.11948/20240213

FINITE SPECTRUM OF STURM-LIOUVILLE PROBLEMS WITH $ N $ TRANSMISSION CONDITIONS AND SPECTRAL PARAMETERS IN THE BOUNDARY CONDITIONS

  • Author Bio: Email: 986273818@qq.com(L. Gu); Email: 76260338@qq.com(S. Li)
  • Corresponding author: Email: lutjwzhu@163.com(J. Zhu) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (41772147), Education Technology Innovation Project of Gansu Province (2022A-174) and Yangling Vocational & Technical College scientific research fund project (ZK24-65, ZK23-49)
  • In this paper, we mainly study the finite spectrum of Sturm-Liouville problems with $ n $ transmission conditions and spectral parameters in the boundary conditions. For any positive integer $ n $ and a set of positive integers $ m_{i}, i=0, 1, \cdots, n $, it has at most $ m_{0}+m_{1}+\cdots+m_{n}+2n+1 $ eigenvalues. And further we show that these $ m_{0}+m_{1}+\cdots+m_{n}+2n+1 $ eigenvalues can be distributed arbitrarily throughout the complex plane in the non-self-adjoint case and anywhere along the real line in the self-adjoint case. The key to this analysis is an iterative construction of the characteristic function, the main tool used in this paper is Rouche's theorem and iterative construction of initial value.

    MSC: 34B15
  • 加载中
  • [1] J. J. Ao, F. Z. Bo and J. Sun, Fourth order boundary value problems with finite spectrum, Appl. Math. Comput., 2014, 244, 952–958.

    Google Scholar

    [2] J. J. Ao and J. Sun, Matrix representations of Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Linear. Algebra. Appl., 2013, 438(5), 2359–2365. doi: 10.1016/j.laa.2012.10.018

    CrossRef Google Scholar

    [3] J. J. Ao and J. Sun, Matrix representations of Sturm-Liouville problems with coupled eigenparameter-dependent boundary conditions, Appl. Math. Comput., 2014, 244, 142–148.

    Google Scholar

    [4] J. J. Ao, J. Sun and A. Zettl, Finite spectrum of 2nth order boundary value problems, Appl. Math. Lett., 2015, 42, 1–8. doi: 10.1016/j.aml.2014.10.003

    CrossRef Google Scholar

    [5] J. J. Ao, J. Sun and A. Zettl, Matrix representations of fourth order boundary value problems with finite spectrum, Linear. Algebra. Appl., 2012, 436(7), 2359–2365. doi: 10.1016/j.laa.2011.10.001

    CrossRef Google Scholar

    [6] J. J. Ao, J. Sun and M. Z. Zhang, The finite spectrum of Sturm-Liouville problems with transmission conditions, Appl. Math. Comput., 2011, 218, 1166–1173.

    Google Scholar

    [7] J. J. Ao, J. Sun and M. Z. Zhang, The finite spectrum of Sturm-Liouville problems with transmission conditions and eigenparameter-dependent boundary conditions, Results. Math., 2013, 63, 1057–1070. doi: 10.1007/s00025-012-0252-z

    CrossRef Google Scholar

    [8] F. V. Atkinson, Discrete and Continuous Boundary Problems, Acdemic Press, New York/London, 1964.

    Google Scholar

    [9] B. Chanane, Accurate solutions of fourth order Sturm-Liouville problems, J. Comput. Appl. Math., 2010, 234, 3064–3071. doi: 10.1016/j.cam.2010.04.023

    CrossRef Google Scholar

    [10] B. Chanane, Sturm-Liouville problems with impulse effects, Appl. Math. Comput., 2010, 190, 610–626.

    Google Scholar

    [11] Y. J. Cui and J. X. Sun, Existence of multiple positive solutions for fourth-order boundary value problems in Banach spaces, Bound. Value. Probl., 2012, 107, 1–13.

    Google Scholar

    [12] W. N. Everitt and D. Race, On necessary and sufficient conditions for the existence of Carathéodory solutions of ordinary differential equations, Quaest. Math., 1978, 2, 507–512. doi: 10.1080/16073606.1978.9631549

    CrossRef Google Scholar

    [13] Q. K. Kong, H. Y. Wu and A. Zettl, Dependence of the n th Sturm-Liouville eigenvalue on the problem, J. Differ. Equations, 1999, 156, 328–354. doi: 10.1006/jdeq.1998.3613

    CrossRef Google Scholar

    [14] Q. K. Kong, H. Y. Wu and A. Zettl, Sturm-Liouville problems with finite spectrum, J. Math. Anal. Appl., 2001, 263, 748–762. doi: 10.1006/jmaa.2001.7661

    CrossRef Google Scholar

    [15] Q. K. Kong and A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Differ. Equations, 1996, 131, 1–19. doi: 10.1006/jdeq.1996.0154

    CrossRef Google Scholar

    [16] Q. K. Kong and A. Zettl, Inverse Sturm-Liouville problems with finite spectrum, J. Math. Anal. Appl., 2012, 386, 1–9. doi: 10.1016/j.jmaa.2011.06.083

    CrossRef Google Scholar

    [17] O. Sh. Mukhtarov, M. Kadakal and F. S. Muhtarov, Eigenvalues and nomarlized eigenfunctions of discontinuous Sturm-Liouville problem with transmission conditions, Rep. Math. Phys., 2004, 54(3), 41–56.

    Google Scholar

    [18] O. Sh. Mukhtarov and S. Yakubov, Problems for ordinary differential equations with transmission conditions, Appl. Anal., 2002, 81, 1033–1064. doi: 10.1080/0003681021000029853

    CrossRef Google Scholar

    [19] J. Wang, R. R. Yang and H. F. Huo, Dynamics of a diffusive viral infection model with impulsive CTL immune response, Appl. Anal., 2023, 103(1), 106–123.

    Google Scholar

    [20] J. Wang, R. R. Yang, J. Wang and J. X. Cao, Threshold dynamics scenario of a plants- pollinators cooperative system with impulsive effect on a periodically evolving domain, Eur. J. Appl. Math., 2024. DOI: 10.1017/S0956792524000135.

    CrossRef Google Scholar

    [21] M. Z. Xu, W. Y. Wang and J. J. Ao, Finite spectrum of Sturm-Liouville problems with n transmission conditions, Iran. J. Sci. Technol. A., 2018, 42, 811–817. doi: 10.1007/s40995-016-0072-1

    CrossRef Google Scholar

    [22] A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs, American Mathematical Society, 2005.

    Google Scholar

    [23] X. Y. Zhang and J. Sun, A class of fourth-order differential operator with eigenparameter-dependent boundary and transmission conditions, Acta. Math. Appl. Sin-E., 2013, 26(1), 205–219.

    Google Scholar

Article Metrics

Article views(672) PDF downloads(258) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint