Citation: | Junwei Zhu, Lina Gu, Shengbiao Li. FINITE SPECTRUM OF STURM-LIOUVILLE PROBLEMS WITH $ N $ TRANSMISSION CONDITIONS AND SPECTRAL PARAMETERS IN THE BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 605-623. doi: 10.11948/20240213 |
In this paper, we mainly study the finite spectrum of Sturm-Liouville problems with $ n $ transmission conditions and spectral parameters in the boundary conditions. For any positive integer $ n $ and a set of positive integers $ m_{i}, i=0, 1, \cdots, n $, it has at most $ m_{0}+m_{1}+\cdots+m_{n}+2n+1 $ eigenvalues. And further we show that these $ m_{0}+m_{1}+\cdots+m_{n}+2n+1 $ eigenvalues can be distributed arbitrarily throughout the complex plane in the non-self-adjoint case and anywhere along the real line in the self-adjoint case. The key to this analysis is an iterative construction of the characteristic function, the main tool used in this paper is Rouche's theorem and iterative construction of initial value.
[1] | J. J. Ao, F. Z. Bo and J. Sun, Fourth order boundary value problems with finite spectrum, Appl. Math. Comput., 2014, 244, 952–958. |
[2] | J. J. Ao and J. Sun, Matrix representations of Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Linear. Algebra. Appl., 2013, 438(5), 2359–2365. doi: 10.1016/j.laa.2012.10.018 |
[3] | J. J. Ao and J. Sun, Matrix representations of Sturm-Liouville problems with coupled eigenparameter-dependent boundary conditions, Appl. Math. Comput., 2014, 244, 142–148. |
[4] | J. J. Ao, J. Sun and A. Zettl, Finite spectrum of 2nth order boundary value problems, Appl. Math. Lett., 2015, 42, 1–8. doi: 10.1016/j.aml.2014.10.003 |
[5] | J. J. Ao, J. Sun and A. Zettl, Matrix representations of fourth order boundary value problems with finite spectrum, Linear. Algebra. Appl., 2012, 436(7), 2359–2365. doi: 10.1016/j.laa.2011.10.001 |
[6] | J. J. Ao, J. Sun and M. Z. Zhang, The finite spectrum of Sturm-Liouville problems with transmission conditions, Appl. Math. Comput., 2011, 218, 1166–1173. |
[7] | J. J. Ao, J. Sun and M. Z. Zhang, The finite spectrum of Sturm-Liouville problems with transmission conditions and eigenparameter-dependent boundary conditions, Results. Math., 2013, 63, 1057–1070. doi: 10.1007/s00025-012-0252-z |
[8] | F. V. Atkinson, Discrete and Continuous Boundary Problems, Acdemic Press, New York/London, 1964. |
[9] | B. Chanane, Accurate solutions of fourth order Sturm-Liouville problems, J. Comput. Appl. Math., 2010, 234, 3064–3071. doi: 10.1016/j.cam.2010.04.023 |
[10] | B. Chanane, Sturm-Liouville problems with impulse effects, Appl. Math. Comput., 2010, 190, 610–626. |
[11] | Y. J. Cui and J. X. Sun, Existence of multiple positive solutions for fourth-order boundary value problems in Banach spaces, Bound. Value. Probl., 2012, 107, 1–13. |
[12] | W. N. Everitt and D. Race, On necessary and sufficient conditions for the existence of Carathéodory solutions of ordinary differential equations, Quaest. Math., 1978, 2, 507–512. doi: 10.1080/16073606.1978.9631549 |
[13] | Q. K. Kong, H. Y. Wu and A. Zettl, Dependence of the n th Sturm-Liouville eigenvalue on the problem, J. Differ. Equations, 1999, 156, 328–354. doi: 10.1006/jdeq.1998.3613 |
[14] | Q. K. Kong, H. Y. Wu and A. Zettl, Sturm-Liouville problems with finite spectrum, J. Math. Anal. Appl., 2001, 263, 748–762. doi: 10.1006/jmaa.2001.7661 |
[15] | Q. K. Kong and A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Differ. Equations, 1996, 131, 1–19. doi: 10.1006/jdeq.1996.0154 |
[16] | Q. K. Kong and A. Zettl, Inverse Sturm-Liouville problems with finite spectrum, J. Math. Anal. Appl., 2012, 386, 1–9. doi: 10.1016/j.jmaa.2011.06.083 |
[17] | O. Sh. Mukhtarov, M. Kadakal and F. S. Muhtarov, Eigenvalues and nomarlized eigenfunctions of discontinuous Sturm-Liouville problem with transmission conditions, Rep. Math. Phys., 2004, 54(3), 41–56. |
[18] | O. Sh. Mukhtarov and S. Yakubov, Problems for ordinary differential equations with transmission conditions, Appl. Anal., 2002, 81, 1033–1064. doi: 10.1080/0003681021000029853 |
[19] | J. Wang, R. R. Yang and H. F. Huo, Dynamics of a diffusive viral infection model with impulsive CTL immune response, Appl. Anal., 2023, 103(1), 106–123. |
[20] | J. Wang, R. R. Yang, J. Wang and J. X. Cao, Threshold dynamics scenario of a plants- pollinators cooperative system with impulsive effect on a periodically evolving domain, Eur. J. Appl. Math., 2024. DOI: 10.1017/S0956792524000135. |
[21] | M. Z. Xu, W. Y. Wang and J. J. Ao, Finite spectrum of Sturm-Liouville problems with n transmission conditions, Iran. J. Sci. Technol. A., 2018, 42, 811–817. doi: 10.1007/s40995-016-0072-1 |
[22] | A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs, American Mathematical Society, 2005. |
[23] | X. Y. Zhang and J. Sun, A class of fourth-order differential operator with eigenparameter-dependent boundary and transmission conditions, Acta. Math. Appl. Sin-E., 2013, 26(1), 205–219. |