Citation: | Yanxin Lei, Wenwen Zhang, Hongquan Wang, Pingrun Li. NOETHERIAN SOLVABILITY FOR CONVOLUTION SINGULAR INTEGRAL EQUATIONS WITH FINITE TRANSLATIONS IN THE CASE OF NORMAL TYPE[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 587-604. doi: 10.11948/20240203 |
In this paper, we mainly study the solvability for some classes of convolution singular integral equations with finite translations in the case of normal type. Via using Fourier transforms, we transform these equations into Riemann boundary value problems with nodes. By means of the classical theory of Riemann-Hilbert problems and the principle of analytic continuation, we discuss the general solutions and conditions of solvability in the normal type. Due to the coefficients of Riemann boundary value problems contain discontinuous points, thus we discuss the solvable conditions and the properties for the equation near the nodes. Unlike the general convolution equations, the unknown function in the questions has finite translations on the real axis, so it is a further generalization of the classical theory of singular integral equations.
[1] | S. M. Amer and S. Dardery, The method of Kantorovich majorants to nonlinear singular integral equation with shift, Appl. Math. Comput., 2009, 215(8), 2799–2805. |
[2] | S. Bai, P. Li and M. Sun, Closed-form solutions for several classes of singular integral equations with convolution and Cauchy operator, Complex. Var. Elliptic. Equ., 2023, 68(11), 1916–1939. doi: 10.1080/17476933.2022.2097661 |
[3] | R. A. Blaya, J. B. Reyes, F. Brackx and H. D. Schepper, Cauchy integral formulae in hermitian quaternionic Clifford analysis, Complex. Anal. Oper. Th., 2012, 6(5), 971–985. doi: 10.1007/s11785-011-0168-8 |
[4] | N. K. Bliev, On continuous solutions of the Carleman-Vekua equation with a singular point, Complex. Var. Elliptic. Equ., 59(10), 1489–1500. doi: 10.1080/17476933.2013.859681 |
[5] | N. K. Bliev and K. S. Tulenov, Noetherian solvability of an operator singular integral equation with a Carleman shift in fractional spaces, 2020, 66(2), 336–346. |
[6] | L. P. Castro, R. C. Guerra and N. M. Tuan, New convolutions and their applicability to integral equations of Wiener-Hopf plus Hankel type, Math. Method. Appl. Sci., 2020, 43(7), 4835–4846. |
[7] | L. P. Castro and E. M. Rojas, Explicit solutions of Cauchy singular integral equations with weighted Carleman shift, J. Math. Anal. Appl., 2010, 371(1), 128–133. doi: 10.1016/j.jmaa.2010.04.050 |
[8] | L. H. Chuan, V. M. F. Nguyen and M. T. Nguyen, On a class of singular integral equations with the linear fractional Carleman shift and the degenerate kernel, Complex. Var. Elliptic. Equ., 2008, 53(2), 117–137. doi: 10.1080/17476930701619782 |
[9] | F. D. Gakhov and U. I. Chersky, Integral operators of convolution type with discontinuous coefficients, Math. Nachr., 1977, 79, 75–78. doi: 10.1002/mana.19770790108 |
[10] | Y. Gong, L. Leong and T. Qiao, Two integral operators in Clifford analysis, J. Math. Anal. Appl., 2009, 354, 435–444. doi: 10.1016/j.jmaa.2008.12.021 |
[11] | A. G. Kamalyan and A. V. Sargsyan, Solvability of some singular integral equations on the circle with the shift, J. Contemp. Mathemat. Anal., 2011, 46, 142–156. doi: 10.3103/S1068362311030034 |
[12] | M. Ku, F. He and Y. Wang, Riemann-Hilbert problems for Hardy space of meta analytic functions on the unit disc, Complex. Anal. Oper. Th., 2018, 12, 457–474. doi: 10.1007/s11785-017-0705-1 |
[13] | L. Lerer, V. Olshevsky and I. M. Spitkovsky, Convolution Equations and Singular Integral Operators: Selected Papers, Birkhäuser Basel, 2010. |
[14] | P. Li, Existence of analytic solutions for some classes of singular integral equations of non-normal type with convolution kernel, Acta. Appl. Math., 2022, 181(1), 5. doi: 10.1007/s10440-022-00522-w |
[15] | P. Li, Holomorphic solutions and solvability theory for a class of linear complete singular integro-differential equations with convolution by Riemann-Hilbert method, Anal. Math. Phys., 2022, 12(6), 146. doi: 10.1007/s13324-022-00759-6 |
[16] | P. Li, Singular integral equations of convolution type with reflection and translation shifts, Numer. Func. Anal. Opt., 2019, 40(9), 1023–1038. doi: 10.1080/01630563.2019.1586721 |
[17] | P. Li, Generalized convolution-type singular integral equations, Appl. Math. Comput., 2017, 311, 314–323. doi: 10.1016/j.cam.2016.07.027 |
[18] | P. Li, Solvability theory of convolution singular integral equations via Riemann-Hilbert approach, J. Comput. Appl. Math., 2020, 370(2), 112601. |
[19] | P. Li and L. Cao, Linear BVPs and SIEs for generalized regular functions in Clifford analysis, Journal of Function Spaces, 2018. DOI: 10.1155/2018/6967149. |
[20] | P. Li and G. Ren, Solvability of singular integro-differential equations via Riemann-Hilbert problem, J. Diff. Eqs., 2018, 265(11), 5455–5471. doi: 10.1016/j.jde.2018.07.056 |
[21] | P. Li, Y. Xia, W. Zhang, Y. Lei and S. Bai, Uniqueness and existence of solutions to some kinds of singular convolution integral equations with Cauchy kernel via R-H problems, Acta. Appl. Math., 2023, 184(1), 2. doi: 10.1007/s10440-023-00556-8 |
[22] | G. S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, Kluwer Academic Publishers, London, 2004. |
[23] | J. Lu, Boundary Value Problems for Analytic Functions, World Sci., Singapore, 2004. |
[24] | J. Lu, Extension of solutions to Riemann boundary value problems and its application, Acta. Math. Sci., 27(4), 694–702. doi: 10.1016/S0252-9602(07)60069-1 |
[25] | A. McIntosh, Clifford Algebras, Fourier Theory, Singular Integrals, and Harmonic Functions on Lipschitz Domains, CRC press, 2018. |
[26] | N. I. Muskhelishvilli, Singular Integral Equations, NauKa, Moscow, 2002. |
[27] | T. Nakazi and T. Yamamoto, Normal singular integral operators with Cauchy kernel on L2, Integr. Equat. Oper. Th., 2014, 78, 233–248. doi: 10.1007/s00020-013-2104-y |
[28] | A. A. Polosin, On the solvability of a singular integral equation with a non-Carleman shift, Diff. Equat+., 2016, 52, 1170–1177. doi: 10.1134/S0012266116090081 |
[29] | E. K. Praha and V. M. Valencia, Solving singular convolution equations using inverse fast Fourier transform, Appl. Math-Czech., 2012, 57(5), 543–550. doi: 10.1007/s10492-012-0032-9 |
[30] | M. A. Sheshko and S. M. Sheshko, Singular integral equation with Cauchy kernel on the real axis, Diff. Equat+., 2010, 46, 568–585. doi: 10.1134/S0012266110040129 |
[31] | M. Sun, P. Li and S. Bai, A new efficient method for two classes of convolution singular integral equations of non-normal type with Cauchy kernels, J. Appl. Anal. Comput., 2022, 12(4), 1250–1273. |
[32] | N. M. Tuan and N. T. Huyen, The solvability and explicit solutions of two integral equations via generalized convolutions, J. Math. Anal. Appl., 2010, 369(2), 712–718. doi: 10.1016/j.jmaa.2010.04.019 |
[33] | T. Tuan and V. K. Tuan, Young inequalities for a Fourier cosine and sine polyconvolution and a generalized convolution, Integr. Transf. Spec. F., 2023, 34(9), 690–702. doi: 10.1080/10652469.2023.2182776 |
[34] | Y. Wang, On Hilbert-type boundary-value problem of poly-Hardy class on the unit disc, Complex. Var. Elliptic. Equ., 2013, 58(4), 497–509. doi: 10.1080/17476933.2011.636809 |