2025 Volume 15 Issue 1
Article Contents

Yanxin Lei, Wenwen Zhang, Hongquan Wang, Pingrun Li. NOETHERIAN SOLVABILITY FOR CONVOLUTION SINGULAR INTEGRAL EQUATIONS WITH FINITE TRANSLATIONS IN THE CASE OF NORMAL TYPE[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 587-604. doi: 10.11948/20240203
Citation: Yanxin Lei, Wenwen Zhang, Hongquan Wang, Pingrun Li. NOETHERIAN SOLVABILITY FOR CONVOLUTION SINGULAR INTEGRAL EQUATIONS WITH FINITE TRANSLATIONS IN THE CASE OF NORMAL TYPE[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 587-604. doi: 10.11948/20240203

NOETHERIAN SOLVABILITY FOR CONVOLUTION SINGULAR INTEGRAL EQUATIONS WITH FINITE TRANSLATIONS IN THE CASE OF NORMAL TYPE

  • In this paper, we mainly study the solvability for some classes of convolution singular integral equations with finite translations in the case of normal type. Via using Fourier transforms, we transform these equations into Riemann boundary value problems with nodes. By means of the classical theory of Riemann-Hilbert problems and the principle of analytic continuation, we discuss the general solutions and conditions of solvability in the normal type. Due to the coefficients of Riemann boundary value problems contain discontinuous points, thus we discuss the solvable conditions and the properties for the equation near the nodes. Unlike the general convolution equations, the unknown function in the questions has finite translations on the real axis, so it is a further generalization of the classical theory of singular integral equations.

    MSC: 45E10, 30E25, 45E05
  • 加载中
  • [1] S. M. Amer and S. Dardery, The method of Kantorovich majorants to nonlinear singular integral equation with shift, Appl. Math. Comput., 2009, 215(8), 2799–2805.

    Google Scholar

    [2] S. Bai, P. Li and M. Sun, Closed-form solutions for several classes of singular integral equations with convolution and Cauchy operator, Complex. Var. Elliptic. Equ., 2023, 68(11), 1916–1939. doi: 10.1080/17476933.2022.2097661

    CrossRef Google Scholar

    [3] R. A. Blaya, J. B. Reyes, F. Brackx and H. D. Schepper, Cauchy integral formulae in hermitian quaternionic Clifford analysis, Complex. Anal. Oper. Th., 2012, 6(5), 971–985. doi: 10.1007/s11785-011-0168-8

    CrossRef Google Scholar

    [4] N. K. Bliev, On continuous solutions of the Carleman-Vekua equation with a singular point, Complex. Var. Elliptic. Equ., 59(10), 1489–1500. doi: 10.1080/17476933.2013.859681

    CrossRef Google Scholar

    [5] N. K. Bliev and K. S. Tulenov, Noetherian solvability of an operator singular integral equation with a Carleman shift in fractional spaces, 2020, 66(2), 336–346.

    Google Scholar

    [6] L. P. Castro, R. C. Guerra and N. M. Tuan, New convolutions and their applicability to integral equations of Wiener-Hopf plus Hankel type, Math. Method. Appl. Sci., 2020, 43(7), 4835–4846.

    Google Scholar

    [7] L. P. Castro and E. M. Rojas, Explicit solutions of Cauchy singular integral equations with weighted Carleman shift, J. Math. Anal. Appl., 2010, 371(1), 128–133. doi: 10.1016/j.jmaa.2010.04.050

    CrossRef Google Scholar

    [8] L. H. Chuan, V. M. F. Nguyen and M. T. Nguyen, On a class of singular integral equations with the linear fractional Carleman shift and the degenerate kernel, Complex. Var. Elliptic. Equ., 2008, 53(2), 117–137. doi: 10.1080/17476930701619782

    CrossRef Google Scholar

    [9] F. D. Gakhov and U. I. Chersky, Integral operators of convolution type with discontinuous coefficients, Math. Nachr., 1977, 79, 75–78. doi: 10.1002/mana.19770790108

    CrossRef Google Scholar

    [10] Y. Gong, L. Leong and T. Qiao, Two integral operators in Clifford analysis, J. Math. Anal. Appl., 2009, 354, 435–444. doi: 10.1016/j.jmaa.2008.12.021

    CrossRef Google Scholar

    [11] A. G. Kamalyan and A. V. Sargsyan, Solvability of some singular integral equations on the circle with the shift, J. Contemp. Mathemat. Anal., 2011, 46, 142–156. doi: 10.3103/S1068362311030034

    CrossRef Google Scholar

    [12] M. Ku, F. He and Y. Wang, Riemann-Hilbert problems for Hardy space of meta analytic functions on the unit disc, Complex. Anal. Oper. Th., 2018, 12, 457–474. doi: 10.1007/s11785-017-0705-1

    CrossRef Google Scholar

    [13] L. Lerer, V. Olshevsky and I. M. Spitkovsky, Convolution Equations and Singular Integral Operators: Selected Papers, Birkhäuser Basel, 2010.

    Google Scholar

    [14] P. Li, Existence of analytic solutions for some classes of singular integral equations of non-normal type with convolution kernel, Acta. Appl. Math., 2022, 181(1), 5. doi: 10.1007/s10440-022-00522-w

    CrossRef Google Scholar

    [15] P. Li, Holomorphic solutions and solvability theory for a class of linear complete singular integro-differential equations with convolution by Riemann-Hilbert method, Anal. Math. Phys., 2022, 12(6), 146. doi: 10.1007/s13324-022-00759-6

    CrossRef Google Scholar

    [16] P. Li, Singular integral equations of convolution type with reflection and translation shifts, Numer. Func. Anal. Opt., 2019, 40(9), 1023–1038. doi: 10.1080/01630563.2019.1586721

    CrossRef Google Scholar

    [17] P. Li, Generalized convolution-type singular integral equations, Appl. Math. Comput., 2017, 311, 314–323. doi: 10.1016/j.cam.2016.07.027

    CrossRef Google Scholar

    [18] P. Li, Solvability theory of convolution singular integral equations via Riemann-Hilbert approach, J. Comput. Appl. Math., 2020, 370(2), 112601.

    Google Scholar

    [19] P. Li and L. Cao, Linear BVPs and SIEs for generalized regular functions in Clifford analysis, Journal of Function Spaces, 2018. DOI: 10.1155/2018/6967149.

    CrossRef Google Scholar

    [20] P. Li and G. Ren, Solvability of singular integro-differential equations via Riemann-Hilbert problem, J. Diff. Eqs., 2018, 265(11), 5455–5471. doi: 10.1016/j.jde.2018.07.056

    CrossRef Google Scholar

    [21] P. Li, Y. Xia, W. Zhang, Y. Lei and S. Bai, Uniqueness and existence of solutions to some kinds of singular convolution integral equations with Cauchy kernel via R-H problems, Acta. Appl. Math., 2023, 184(1), 2. doi: 10.1007/s10440-023-00556-8

    CrossRef Google Scholar

    [22] G. S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, Kluwer Academic Publishers, London, 2004.

    Google Scholar

    [23] J. Lu, Boundary Value Problems for Analytic Functions, World Sci., Singapore, 2004.

    Google Scholar

    [24] J. Lu, Extension of solutions to Riemann boundary value problems and its application, Acta. Math. Sci., 27(4), 694–702. doi: 10.1016/S0252-9602(07)60069-1

    CrossRef Google Scholar

    [25] A. McIntosh, Clifford Algebras, Fourier Theory, Singular Integrals, and Harmonic Functions on Lipschitz Domains, CRC press, 2018.

    Google Scholar

    [26] N. I. Muskhelishvilli, Singular Integral Equations, NauKa, Moscow, 2002.

    Google Scholar

    [27] T. Nakazi and T. Yamamoto, Normal singular integral operators with Cauchy kernel on L2, Integr. Equat. Oper. Th., 2014, 78, 233–248. doi: 10.1007/s00020-013-2104-y

    CrossRef Google Scholar

    [28] A. A. Polosin, On the solvability of a singular integral equation with a non-Carleman shift, Diff. Equat+., 2016, 52, 1170–1177. doi: 10.1134/S0012266116090081

    CrossRef Google Scholar

    [29] E. K. Praha and V. M. Valencia, Solving singular convolution equations using inverse fast Fourier transform, Appl. Math-Czech., 2012, 57(5), 543–550. doi: 10.1007/s10492-012-0032-9

    CrossRef Google Scholar

    [30] M. A. Sheshko and S. M. Sheshko, Singular integral equation with Cauchy kernel on the real axis, Diff. Equat+., 2010, 46, 568–585. doi: 10.1134/S0012266110040129

    CrossRef Google Scholar

    [31] M. Sun, P. Li and S. Bai, A new efficient method for two classes of convolution singular integral equations of non-normal type with Cauchy kernels, J. Appl. Anal. Comput., 2022, 12(4), 1250–1273.

    Google Scholar

    [32] N. M. Tuan and N. T. Huyen, The solvability and explicit solutions of two integral equations via generalized convolutions, J. Math. Anal. Appl., 2010, 369(2), 712–718. doi: 10.1016/j.jmaa.2010.04.019

    CrossRef Google Scholar

    [33] T. Tuan and V. K. Tuan, Young inequalities for a Fourier cosine and sine polyconvolution and a generalized convolution, Integr. Transf. Spec. F., 2023, 34(9), 690–702. doi: 10.1080/10652469.2023.2182776

    CrossRef Google Scholar

    [34] Y. Wang, On Hilbert-type boundary-value problem of poly-Hardy class on the unit disc, Complex. Var. Elliptic. Equ., 2013, 58(4), 497–509. doi: 10.1080/17476933.2011.636809

    CrossRef Google Scholar

Article Metrics

Article views(687) PDF downloads(187) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint