2025 Volume 15 Issue 2
Article Contents

Dong Guo, Huo Tang, Xi Luo, Zong-Tao Li. THE SHARP BOUNDS OF HANKEL DETERMINANTS FOR THE FOUR-LEAF-TYPE BOUNDED TURNING FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 958-972. doi: 10.11948/20240227
Citation: Dong Guo, Huo Tang, Xi Luo, Zong-Tao Li. THE SHARP BOUNDS OF HANKEL DETERMINANTS FOR THE FOUR-LEAF-TYPE BOUNDED TURNING FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 958-972. doi: 10.11948/20240227

THE SHARP BOUNDS OF HANKEL DETERMINANTS FOR THE FOUR-LEAF-TYPE BOUNDED TURNING FUNCTIONS

  • Author Bio: Email: gd791217@163.com(D. Guo); Email: thth2009@163.com(H. Tang); Email: 93030910@qq.com(X. Luo)
  • Corresponding author: Email: lizt2046@163.com(Z.-T. Li)
  • Fund Project: The authors were supported by the Natural Science Foundation of Anhui Provincial Department of Education (No. KJ2020A0993, KJ2020ZD74) and the high-level talent research start-up project (No. DC2300000286)
  • In the paper, a family of bounded turning functions involving a four-leaf-type domain is studied in the unit disk. The goal of the study is to explore the bounds of second and the third Hankel determinant for functions in the class. All of obtained bounds have been sharp.

    MSC: 30C45, 30C50
  • 加载中
  • [1] A. S. Alshehry, R. Shah and A. Bariq, The second Hankel determinant of logarithmic coefficients for starlike and convex functions involving four-leaf-shaped domain, Journal of Function Spaces, 2022, 2022, Art. 2621811.

    Google Scholar

    [2] D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett., 2013, 23, 103–107.

    Google Scholar

    [3] A. Jangteng, S. A. Halim and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal Pure. Appl. Math., 2006, 7(2), 1–5.

    Google Scholar

    [4] A. Jangteng, S. A. Halim and M. Darus, Coefficient inequality for starlike and convex functions, Int. J. Math. Anal., 2007, 1(13), 619–625.

    Google Scholar

    [5] B. Kowalczyk, A. Lecko and Y. J. Sim, The sharp bound of the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc., 2018, 97, 435–445. doi: 10.1017/S0004972717001125

    CrossRef Google Scholar

    [6] O. S. Kwon, A. Lecho and Y. J. Sim, On the fourth coefficient of functions in the Carathéodory class, Comput. Methods Funct. Theory, 2018, 18(2), 307–314. doi: 10.1007/s40315-017-0229-8

    CrossRef Google Scholar

    [7] H. Orhan, N. Magesh and J. Yamint, Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish Journal of Mathematics, 2016, 40, 679–687. doi: 10.3906/mat-1505-3

    CrossRef Google Scholar

    [8] C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 1966, 1, 111–122.

    Google Scholar

    [9] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika., 1967, 14, 108–112. doi: 10.1112/S002557930000807X

    CrossRef Google Scholar

    [10] B. Rath, K. S. Kumar and D. V. Krishna, An exact estimate of the third Hankel determinants for functions inverse to convex functions, Matematychni Studii., 2023, 60(1), 34–39. doi: 10.30970/ms.60.1.34-39

    CrossRef Google Scholar

    [11] B. Rath, K. S. Kumar, D. V. Krishna and G. K. S. Viswanadh, The sharp bound of the third Hankel determinants for inverse of starlike functions with respect to symmetric points, Matematychni Studii., 2022, 58(1), 45–50. doi: 10.30970/ms.58.1.45-50

    CrossRef Google Scholar

    [12] R. J. Rlibera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 1982, 85(2), 225–230. doi: 10.1090/S0002-9939-1982-0652447-5

    CrossRef Google Scholar

    [13] L. Shi, M. Arif, M. Raza and M. Abbas, Hankel determinant containing logarithmic coefficients for bounded turning functions connected to a three-leaf-shaped domain, Mathematics, 2022, 10, Art. 2924. doi: 10.3390/math10162924

    CrossRef Google Scholar

    [14] L. Shi, M. Arif, K. Ullah, N. Alreshidi and M. Shutaywi, On sharp estimate of third Hankel determinant for a subclass of starlike functions, Fractal Fract., 2022, 6, Art. 437. doi: 10.3390/fractalfract6080437

    CrossRef Google Scholar

    [15] L. Shi, H. M. Srivastava, N. E. Cho and M. Arif, Sharp coefficient bounds for a subclass of bounded turning functions with a cardioid domain, Axioms, 2023, 12(8), 860–873.

    Google Scholar

    [16] H. M. Srivastava, B. Rath, K. S. Kumar and D. V. Krishna, Some sharp bounds of the third-order Hankel determinant for the inverses of the Ozaki type close-to-convex functions, Bull. Sci. Math., 2024, 191, Art. 103381. doi: 10.1016/j.bulsci.2023.103381

    CrossRef Google Scholar

    [17] Y. J. Sun, M. Arif, L. Shi and M. I. Faisal, Some further coefficient bounds on a new subclass of analytic functions, Mathematics, 2023, 11, Art. 2784. doi: 10.3390/math11122784

    CrossRef Google Scholar

    [18] Y. J. Sun, M. Arif, K. Ullah, L. Shi and M. I. Faisal, Hankel determinant for certain new classes of analytic functions associated the activation functions, Heliyon, 2023, 9, Art. e21449. doi: 10.1016/j.heliyon.2023.e21449

    CrossRef Google Scholar

    [19] P. Sunthrayuth, Y. Jawarneh, M. Naeem and N. Iqbal, Some sharp results on coefficient estimate problems for four-leaf-type bounded turning functions, Journal of Function Spaces, 2022, 2022, Art. 8356125.

    Google Scholar

    [20] H. Tang, A. Ahmad, A. Rasheed, A. Ali, S. Hussain and S. Noor, Sharp coefficient and Hankel problems related to a symmetric domain, Symmetry, 2023, 15, Art. 1865. doi: 10.3390/sym15101865

    CrossRef Google Scholar

    [21] K. Ullah, H. M. Srivastava, A. Rafiq and M. Arif, A study of sharp coefficient bounds for anew subfamily of starlike functions, J. Inequalities Appl., 2021, 2021, Art. 194. doi: 10.1186/s13660-021-02729-1

    CrossRef Google Scholar

    [22] Z. G. Wang, M. Arif, Z. H. Liu, S. Zainab, R. Fayyaz, M. Ihsan and M. Shutaywi, Sharp bounds on Hankel determinants for certain subclass of starlike functions, J. Appl. Anal. Comput., 2023, 13(2), 860–873.

    Google Scholar

    [23] Z. G. Wang, M. Raza, M. Arif and K. Ahmad, On the third and fourth Hankel determinants of a subclass of analytic functions, Bull. Malays. Math. Sci. Soc., 2022, 45, 323–359. doi: 10.1007/s40840-021-01195-8

    CrossRef Google Scholar

Article Metrics

Article views(347) PDF downloads(198) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint