Citation: | Dong Guo, Huo Tang, Xi Luo, Zong-Tao Li. THE SHARP BOUNDS OF HANKEL DETERMINANTS FOR THE FOUR-LEAF-TYPE BOUNDED TURNING FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 958-972. doi: 10.11948/20240227 |
In the paper, a family of bounded turning functions involving a four-leaf-type domain is studied in the unit disk. The goal of the study is to explore the bounds of second and the third Hankel determinant for functions in the class. All of obtained bounds have been sharp.
[1] | A. S. Alshehry, R. Shah and A. Bariq, The second Hankel determinant of logarithmic coefficients for starlike and convex functions involving four-leaf-shaped domain, Journal of Function Spaces, 2022, 2022, Art. 2621811. |
[2] | D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett., 2013, 23, 103–107. |
[3] | A. Jangteng, S. A. Halim and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal Pure. Appl. Math., 2006, 7(2), 1–5. |
[4] | A. Jangteng, S. A. Halim and M. Darus, Coefficient inequality for starlike and convex functions, Int. J. Math. Anal., 2007, 1(13), 619–625. |
[5] | B. Kowalczyk, A. Lecko and Y. J. Sim, The sharp bound of the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc., 2018, 97, 435–445. doi: 10.1017/S0004972717001125 |
[6] | O. S. Kwon, A. Lecho and Y. J. Sim, On the fourth coefficient of functions in the Carathéodory class, Comput. Methods Funct. Theory, 2018, 18(2), 307–314. doi: 10.1007/s40315-017-0229-8 |
[7] | H. Orhan, N. Magesh and J. Yamint, Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish Journal of Mathematics, 2016, 40, 679–687. doi: 10.3906/mat-1505-3 |
[8] | C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 1966, 1, 111–122. |
[9] | C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika., 1967, 14, 108–112. doi: 10.1112/S002557930000807X |
[10] | B. Rath, K. S. Kumar and D. V. Krishna, An exact estimate of the third Hankel determinants for functions inverse to convex functions, Matematychni Studii., 2023, 60(1), 34–39. doi: 10.30970/ms.60.1.34-39 |
[11] | B. Rath, K. S. Kumar, D. V. Krishna and G. K. S. Viswanadh, The sharp bound of the third Hankel determinants for inverse of starlike functions with respect to symmetric points, Matematychni Studii., 2022, 58(1), 45–50. doi: 10.30970/ms.58.1.45-50 |
[12] | R. J. Rlibera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 1982, 85(2), 225–230. doi: 10.1090/S0002-9939-1982-0652447-5 |
[13] | L. Shi, M. Arif, M. Raza and M. Abbas, Hankel determinant containing logarithmic coefficients for bounded turning functions connected to a three-leaf-shaped domain, Mathematics, 2022, 10, Art. 2924. doi: 10.3390/math10162924 |
[14] | L. Shi, M. Arif, K. Ullah, N. Alreshidi and M. Shutaywi, On sharp estimate of third Hankel determinant for a subclass of starlike functions, Fractal Fract., 2022, 6, Art. 437. doi: 10.3390/fractalfract6080437 |
[15] | L. Shi, H. M. Srivastava, N. E. Cho and M. Arif, Sharp coefficient bounds for a subclass of bounded turning functions with a cardioid domain, Axioms, 2023, 12(8), 860–873. |
[16] | H. M. Srivastava, B. Rath, K. S. Kumar and D. V. Krishna, Some sharp bounds of the third-order Hankel determinant for the inverses of the Ozaki type close-to-convex functions, Bull. Sci. Math., 2024, 191, Art. 103381. doi: 10.1016/j.bulsci.2023.103381 |
[17] | Y. J. Sun, M. Arif, L. Shi and M. I. Faisal, Some further coefficient bounds on a new subclass of analytic functions, Mathematics, 2023, 11, Art. 2784. doi: 10.3390/math11122784 |
[18] | Y. J. Sun, M. Arif, K. Ullah, L. Shi and M. I. Faisal, Hankel determinant for certain new classes of analytic functions associated the activation functions, Heliyon, 2023, 9, Art. e21449. doi: 10.1016/j.heliyon.2023.e21449 |
[19] | P. Sunthrayuth, Y. Jawarneh, M. Naeem and N. Iqbal, Some sharp results on coefficient estimate problems for four-leaf-type bounded turning functions, Journal of Function Spaces, 2022, 2022, Art. 8356125. |
[20] | H. Tang, A. Ahmad, A. Rasheed, A. Ali, S. Hussain and S. Noor, Sharp coefficient and Hankel problems related to a symmetric domain, Symmetry, 2023, 15, Art. 1865. doi: 10.3390/sym15101865 |
[21] | K. Ullah, H. M. Srivastava, A. Rafiq and M. Arif, A study of sharp coefficient bounds for anew subfamily of starlike functions, J. Inequalities Appl., 2021, 2021, Art. 194. doi: 10.1186/s13660-021-02729-1 |
[22] | Z. G. Wang, M. Arif, Z. H. Liu, S. Zainab, R. Fayyaz, M. Ihsan and M. Shutaywi, Sharp bounds on Hankel determinants for certain subclass of starlike functions, J. Appl. Anal. Comput., 2023, 13(2), 860–873. |
[23] | Z. G. Wang, M. Raza, M. Arif and K. Ahmad, On the third and fourth Hankel determinants of a subclass of analytic functions, Bull. Malays. Math. Sci. Soc., 2022, 45, 323–359. doi: 10.1007/s40840-021-01195-8 |