Citation: | Ziqing Yuan. EXISTENCE AND CONCENTRATION OF SOLUTIONS FOR DISCONTINUOUS ELLIPTIC PROBLEMS WITH CRITICAL GROWTH[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 973-992. doi: 10.11948/20240241 |
This paper concerns the following elliptical problem with discontinuous nonlinearity
$\left\{\begin{array}{l}-\epsilon^2 \Delta u+V(x) u=f(u)+|u|^{2^*-2} u, \quad x \in \mathbb{R}^N, \\u>0,\end{array}\right.$
where N ≥ 3, ε > 0 and f(u) is a discontinuous function. We obtain the existence and concentration results of this problem. Our results generalize some recent results on this kind of problems. In order to obtain these results, a suitable truncation, concentration compactness principle, new analytic technique and variational method are used.
[1] | C. O. Alves, G. F. Figueiredo and R. G. Nascimento, On existence and concentration of solutions for an elliptic problem with discontinuous nonlinearity via penalization method, Z. Angew. Math. Phys., 2014, 65(1), 19–40. doi: 10.1007/s00033-013-0316-2 |
[2] | C. O. Alves, J. V. Gonvalves and J. A. Santos, Strongly nonlinear multivalued elliptic equations on a bounded domain, J. Global Optim., 2014, 58(3), 565–593. doi: 10.1007/s10898-013-0052-3 |
[3] | C. O. Alves, A. Santos and R. Nemer, Multiple solutions for a problem with discontinuous nonlinearity, Annali di Matematica Pura ed Applicata, 2018, 197(3), 883–903. doi: 10.1007/s10231-017-0708-6 |
[4] | X, Cabré and A. Capella, Regularity of radial minimizers and extremal solutions of semilinear elliptic equations, J. Funct. Anal., 2006, 238(2), 709–733. doi: 10.1016/j.jfa.2005.12.018 |
[5] | K. Chang, On the multiple solutions of the elliptic differential equations with discontinuous nonlinear terms, Sci. Sinica, 1978, 21, 139–158. |
[6] | K. Chang, Variational methods for nondifferentiabe functionals and their applications to partial differential inequalities, J. Math. Anal. Appl., 1981, 80, 102–129. doi: 10.1016/0022-247X(81)90095-0 |
[7] | K. Chang, The obstacle problem and partial differential equations with discontinuous nonlinearities, Comm. Pure Appl. Math., 1978, 33, 139–158. |
[8] | K. C. Chang, S. Shao, et al., Nonsmooth critical point theory and applications to the spectral graph theory, Science China Mathematics, 2021, 64(1), 1–32. doi: 10.1007/s11425-019-1625-8 |
[9] | F. H. Clarke, Optimization and Nonsmooth Analysis, Wley, New York, 1983. |
[10] | A. Clop, A. Gentile and A. Passarelli di Napoli, Higher differentiability results for solutions to a class of non-homogeneous elliptic problems under sub-quadratic growth conditions, Bulletin of Mathematical Sciences, 2023, 13(2), 2350008. doi: 10.1142/S166436072350008X |
[11] | J. N. Corvellec, V. V. Motreanu and C. Saccon, Doubly resonant semilinear elliptic problems via nonsmooth critical point theory, J. Differential Equations, 2010, 248(8), 2064–2091. doi: 10.1016/j.jde.2009.11.005 |
[12] | C. Chu, X. Liu and Y. Xie, Sign-changing solutions for semilinear elliptic equation with variable exponent, J. Math. Anal. Appl., 2022, 507(1), 125748. doi: 10.1016/j.jmaa.2021.125748 |
[13] | M. del Pino and P. L. Felmer, Local Mountain Pass for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ., 1996, 4, 121–137. doi: 10.1007/BF01189950 |
[14] | I. Ekeland, On the variational principle, J. Math. Anal. Appl., 1974, 47, 324–353. doi: 10.1016/0022-247X(74)90025-0 |
[15] | L. Gasiński and N. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman and Hall/CRC Press, Boca Raton, FL, 2005. |
[16] | D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. |
[17] | M. Grossi, A. Pistoia and J. Wei, Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Calc. Var. Partial Differential Equations, 2000, 11(2), 143–175. doi: 10.1007/PL00009907 |
[18] | A. Iannizzotto and N. S. Papageorgiou, Existence of three nontrivial solutions for nonlinear Neumann hemivariational inequalities, Nonlinear Anal., 2009, 70(9), 3285–3297. doi: 10.1016/j.na.2008.04.033 |
[19] | C. Ji and V. D. Radulescu, Concentration phenomena for nonlinear magnetic Schrödinger equations with critical growth, Israel J. Math., 2021, 241, 465–500. doi: 10.1007/s11856-021-2105-5 |
[20] | G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. |
[21] | Y. Li, B. Zhang and X. Han, Existence and concentration behavior of positive solutions to Schrödinger-Poisson-Slater equations, Advances in Nonlinear Analysis, 2023, 12, 20220293. doi: 10.1515/anona-2022-0293 |
[22] | X. Lin and X. Tang, On concave perturbations of a periodic elliptic problem in R2 involving critical exponential growth, Advances in Nonlinear Analysis, 2023, 12, 169–181. |
[23] | P. L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case. Part Ⅱ, Ann. Inst. H. Poincaré, 1984, 1, 223–283. doi: 10.1016/s0294-1449(16)30422-x |
[24] | Z. Liu, V. D. Radulescu and Z. Q. Yuan, Concentration of solutions for fractional Kirchhoffff equations with discontinuous reaction, Z. Angew. Math. Phys., 2022, 73, 211. doi: 10.1007/s00033-022-01849-y |
[25] | C. B. Morrey, Multiple Integrals in Calculus of Variations, Springer Verlag, Berlin, 1966. |
[26] | D. Naimen, Concentration profile, energy, and weak limits of radial solutions to semilinear elliptic equations with Trudinger-Moser critical nonlinearities, Calc. Var. Partial Differential Equations, 2021, 60(2), 1–54. |
[27] | C. Wang and J. Su, The semilinear elliptic equations with double weighted critical exponents, Journal of Mathematical Physics, 2022, 63(4), 041505. doi: 10.1063/5.0069233 |
[28] | Z. Q. Yuan and Y. Wang, Positive solutions to discontinuous quasilinear problems with critical exponents, Monatshefte für Mathmatic, 2022, 199(3), 695–713. doi: 10.1007/s00605-022-01746-6 |
[29] | Z. Q. Yuan and J. S. Yu, Existence of solutions for Dirichlet elliptic problems with discontinuous nonlinearity, Nonlinear Anal., 2020, 197, 111848. doi: 10.1016/j.na.2020.111848 |
[30] | Y. Yue, T. Yu and Z. Bai, Infinitely many nonnegative solutions for a fractional differential inclusion with oscillatory potential, Appl. Math. Lett., 2019, 88, 64–72. doi: 10.1016/j.aml.2018.08.010 |
[31] | J. Zhang, W. Zhang and V. D. Radulescu, Double phase problems with competing potentials: Concentration and multiplication of ground states, Math. Z., 2022, 301, 4037–4078. doi: 10.1007/s00209-022-03052-1 |