Citation: | Mohamed Jleli, Bessem Samet. ON BANACH'S FIXED POINT THEOREM IN PERTURBED METRIC SPACES[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 993-1001. doi: 10.11948/20240242 |
The measurement of the distance between two points is always tainted by errors. The causes of such errors are varied. For instance, the imperfection in the adjustment of instruments affects the accuracy of measurements. These errors are generally "small", however their accumulations can become significant. Motivated by this fact, in this paper, we introduce the notion of perturbed metric spaces and establish an interesting generalization of Banach's fixed point theorem in such spaces.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 1922, 3, 133–181. doi: 10.4064/fm-3-1-133-181 |
[2] | D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 1969, 20(2), 458–464. doi: 10.1090/S0002-9939-1969-0239559-9 |
[3] | A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debr., 2000, 57(1–2), 31–37. doi: 10.5486/PMD.2000.2133 |
[4] | L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 1974, 45(2), 267–273. |
[5] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1993, 1(1), 5–11. |
[6] | M. Han, Bifurcation Theory of Limit Cycles, Science Press, Beijing, 2013. |
[7] | H. Huang and X. Fu, Asymptotic properties of solutions for impulsive neutral stochastic functional integro-differential equations, J. Math. Phys., 2021, 62(1), 18 pp. |
[8] |
S. M. Imran, S. Asghar and M. Mushtaq, Mixed convection flow over an unsteady stretching surface in a porous medium with heat source, Mathematical Problems in Engineering, 2012. DOI: |
[9] | M. Jleli, T. Kawakami and B. Samet, Critical behavior for a semilinear parabolic equation with forcing term depending on time and space, J. Math. Anal. Appl., 2020, 486(2), 123931. doi: 10.1016/j.jmaa.2020.123931 |
[10] | M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014, 38(2014), 1–8. |
[11] | M. Jleli and B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 2028, 20, 128. |
[12] | F. Khojasteh, S. Shukla and S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat., 2015, 29(6), 1189–1194. |
[13] | C. Li and J. Llibre, Uniqueness of limit cycles for Lienard differential equations of degree four, J. Diff. Eqs., 2012, 252(4), 3142–3162. |
[14] | Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 2006, 7(2), 289–297. |
[15] | S. Oltra and O. Valero, Banach's fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste., 2004, 36, 17–26. |
[16] | A. Petruşel, I. A. Rus and M. A. Şerban, Some variants of fibre contraction principle and applications: From existence to the convergence of successive approximations, Fixed Point Theory, 2021, 22(2), 795–808. |
[17] | O. Popescu, A new type of contractive mappings in complete metric spaces, Bull. Transilv. Univ. Braşov, Ser. Ⅲ, Math. Inform. Phys., 2008, 1(50), 479–482. |
[18] | O. Popescu, Some remarks on the paper "Fixed point theorems for generalized contractive mappings in metric spaces", J. Fixed Point Theory Appl., 2021, 23(72), 1–10. |
[19] | A. C. Ran and M. C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 2004, 132(5), 1435–1443. |
[20] | S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital., 1972, 5(5), 26–42. |
[21] | I. A. Rus, Fixed point theory in partial metric spaces, An. Univ. Vest Timiş Ser. Mat. Inform., 2008, XLVI, 149–160. |
[22] | I. A. Rus, Some nonlinear functional and integral equations via weakly Picard operator theory: A survey, Carpathian J. Math., 2010, 26(2), 230–258. |
[23] | F. Vetro, Fixed point for α-θ-φ-contractions and first-order periodic differential problem, RACSAM., 2019, 113(3), 1823–1837. |
The set