2025 Volume 15 Issue 2
Article Contents

Mohamed Jleli, Bessem Samet. ON BANACH'S FIXED POINT THEOREM IN PERTURBED METRIC SPACES[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 993-1001. doi: 10.11948/20240242
Citation: Mohamed Jleli, Bessem Samet. ON BANACH'S FIXED POINT THEOREM IN PERTURBED METRIC SPACES[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 993-1001. doi: 10.11948/20240242

ON BANACH'S FIXED POINT THEOREM IN PERTURBED METRIC SPACES

  • Author Bio: Email: jleli@ksu.edu.sa(M. Jleli)
  • Corresponding author: Email: bsamet@ksu.edu.sa(B. Samet)
  • Fund Project: The authors were supported by Researchers Supporting Project Number (RSP2024R57), King Saud University, Riyadh, Saudi Arabia
  • The measurement of the distance between two points is always tainted by errors. The causes of such errors are varied. For instance, the imperfection in the adjustment of instruments affects the accuracy of measurements. These errors are generally "small", however their accumulations can become significant. Motivated by this fact, in this paper, we introduce the notion of perturbed metric spaces and establish an interesting generalization of Banach's fixed point theorem in such spaces.

    MSC: 54E50, 47H09, 47H10
  • 加载中
  • [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 1922, 3, 133–181. doi: 10.4064/fm-3-1-133-181

    CrossRef Google Scholar

    [2] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 1969, 20(2), 458–464. doi: 10.1090/S0002-9939-1969-0239559-9

    CrossRef Google Scholar

    [3] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debr., 2000, 57(1–2), 31–37. doi: 10.5486/PMD.2000.2133

    CrossRef Google Scholar

    [4] L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 1974, 45(2), 267–273.

    Google Scholar

    [5] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1993, 1(1), 5–11.

    Google Scholar

    [6] M. Han, Bifurcation Theory of Limit Cycles, Science Press, Beijing, 2013.

    Google Scholar

    [7] H. Huang and X. Fu, Asymptotic properties of solutions for impulsive neutral stochastic functional integro-differential equations, J. Math. Phys., 2021, 62(1), 18 pp.

    Google Scholar

    [8] S. M. Imran, S. Asghar and M. Mushtaq, Mixed convection flow over an unsteady stretching surface in a porous medium with heat source, Mathematical Problems in Engineering, 2012. DOI: 10.1155/2012/485418.

    Google Scholar

    [9] M. Jleli, T. Kawakami and B. Samet, Critical behavior for a semilinear parabolic equation with forcing term depending on time and space, J. Math. Anal. Appl., 2020, 486(2), 123931. doi: 10.1016/j.jmaa.2020.123931

    CrossRef Google Scholar

    [10] M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014, 38(2014), 1–8.

    Google Scholar

    [11] M. Jleli and B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 2028, 20, 128.

    Google Scholar

    [12] F. Khojasteh, S. Shukla and S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat., 2015, 29(6), 1189–1194.

    Google Scholar

    [13] C. Li and J. Llibre, Uniqueness of limit cycles for Lienard differential equations of degree four, J. Diff. Eqs., 2012, 252(4), 3142–3162.

    Google Scholar

    [14] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 2006, 7(2), 289–297.

    Google Scholar

    [15] S. Oltra and O. Valero, Banach's fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste., 2004, 36, 17–26.

    Google Scholar

    [16] A. Petruşel, I. A. Rus and M. A. Şerban, Some variants of fibre contraction principle and applications: From existence to the convergence of successive approximations, Fixed Point Theory, 2021, 22(2), 795–808.

    Google Scholar

    [17] O. Popescu, A new type of contractive mappings in complete metric spaces, Bull. Transilv. Univ. Braşov, Ser. Ⅲ, Math. Inform. Phys., 2008, 1(50), 479–482.

    Google Scholar

    [18] O. Popescu, Some remarks on the paper "Fixed point theorems for generalized contractive mappings in metric spaces", J. Fixed Point Theory Appl., 2021, 23(72), 1–10.

    Google Scholar

    [19] A. C. Ran and M. C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 2004, 132(5), 1435–1443.

    Google Scholar

    [20] S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital., 1972, 5(5), 26–42.

    Google Scholar

    [21] I. A. Rus, Fixed point theory in partial metric spaces, An. Univ. Vest Timiş Ser. Mat. Inform., 2008, XLVI, 149–160.

    Google Scholar

    [22] I. A. Rus, Some nonlinear functional and integral equations via weakly Picard operator theory: A survey, Carpathian J. Math., 2010, 26(2), 230–258.

    Google Scholar

    [23] F. Vetro, Fixed point for α-θ-φ-contractions and first-order periodic differential problem, RACSAM., 2019, 113(3), 1823–1837.

    Google Scholar

Figures(1)  /  Tables(1)

Article Metrics

Article views(667) PDF downloads(617) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint