2025 Volume 15 Issue 3
Article Contents

Yiming Tang, Xin Wu, Rong Yuan, Fengjie Geng, Zhaohai Ma. ASYMPTOTIC BEHAVIOR OF A DELAYED NONLOCAL DISPERSAL LOTKA-VOLTERRA COMPETITIVE SYSTEM[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1453-1482. doi: 10.11948/20240262
Citation: Yiming Tang, Xin Wu, Rong Yuan, Fengjie Geng, Zhaohai Ma. ASYMPTOTIC BEHAVIOR OF A DELAYED NONLOCAL DISPERSAL LOTKA-VOLTERRA COMPETITIVE SYSTEM[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1453-1482. doi: 10.11948/20240262

ASYMPTOTIC BEHAVIOR OF A DELAYED NONLOCAL DISPERSAL LOTKA-VOLTERRA COMPETITIVE SYSTEM

  • Author Bio: Email: tym55663@163.com(Y. Tang); Email: xwu2018@ecjtu.edu.cn(X. Wu); Email: ryuan@bnu.edu.cn(R. Yuan); Email: gengfengjie@cugb.edu.cn(F. Geng)
  • Corresponding author: Email: zhaohaima@cugb.edu.cn(Z. Ma)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (12001502), the 2024 Graduate Innovation Fund Project of China University of Geosciences, Beijing (YB2024YC044), Discipline Development Research Fund of China University of Geosciences (Beijing) (2024XK115) and 2024 Graduate Education and Teaching Reform Project Fund of China University of Geosciences (Beijing)
  • This paper investigates the asymptotic behavior of a nonlocal dispersal Lotka-Volterra competitive system with time delay across the entire $\mathbb{R}^N$. We establish $L^\infty-$decay estimates of solutions of linear systems converging to equilibria utilizing the Fourier transform method applied to the fundamental solution and the Fourier splitting technique. For the nonlinear time-delayed nonlocal dispersal Lotka-Volterra competitive system, we leverage the results from linear systems and obtain the long-time behavior of solutions of the nonlinear system manifesting as the form of time-exponential. More precisely, we further deduce $L^\infty-$decay estimates of solutions of the original nonlinear system through the properties of convolution and Hölder inequality. Additionally, numerical simulations are presented to bolster the principal theoretical results and illustrate that the time delay impedes species growth.

    MSC: 35B40, 92D25, 35K57
  • 加载中
  • [1] A. Z. Akcasu and E. Daniels, Fluctuation analysis in simple fluids, Phys. Rev. A, 1970, 2(3), 962–975. doi: 10.1103/PhysRevA.2.962

    CrossRef Google Scholar

    [2] X. Bao, W.-T. Li, W. Shen, et al., Spreading speeds and linear determinacy of time dependent diffusive cooperative/competitive systems, J. Differential Equations, 2018, 265(7), 3048–3091. doi: 10.1016/j.jde.2018.05.003

    CrossRef Google Scholar

    [3] M. Bogoya, On non-local reaction-diffusion system in a bounded domain, Bound. Value Probl., 2018, 2018(1), 38. doi: 10.1186/s13661-018-0958-2

    CrossRef Google Scholar

    [4] E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl., 2006, 86(3), 271–291. doi: 10.1016/j.matpur.2006.04.005

    CrossRef Google Scholar

    [5] R. Cherniha and V. Davydovych, Construction and application of exact solutions of the diffusive Lotka-Volterra system: A review and new results, Commun. Nonlinear Sci. Numer. Simul., 2022, 113, 106579. doi: 10.1016/j.cnsns.2022.106579

    CrossRef Google Scholar

    [6] C. Cortazar, M. Elgueta and J. D. Rossi, Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions, Israel J. Math., 2009, 170(1), 53–60. doi: 10.1007/s11856-009-0019-8

    CrossRef Google Scholar

    [7] J. Coville and L. Dupaigne, Propagation speed of travelling fronts in nonlocal reaction-diffusion equations, Nonlinear Anal., 2005, 60(5), 797–819. doi: 10.1016/j.na.2003.10.030

    CrossRef Google Scholar

    [8] Y. Du and W. Ni, Spreading speed for some cooperative systems with nonlocal diffusion and free boundaries, part 1: Semi-wave and a threshold condition, J. Differential Equations, 2022, 308(25), 369–420.

    Google Scholar

    [9] G. Faye, Multidimensional stability of planar traveling waves for the scalar nonlocal Allen-Cahn equation, Discrete Contin. Dyn. Syst., 2016, 36(5), 2473–2496.

    Google Scholar

    [10] B.-S. Han and D.-Y. Kong, Propagation dynamics of a nonlocal reaction-diffusion system, Discrete Contin. Dyn. Syst., 2023, 43(7), 2756–2780. doi: 10.3934/dcds.2023028

    CrossRef Google Scholar

    [11] B.-S. Han, Y. Yang, W.-J. Bo, et al., Global dynamics of a Lotka-Volterra competition diffusion system with nonlocal effects, Int. J. Bifurcation Chaos, 2020, 30(05), 2050066. doi: 10.1142/S0218127420500662

    CrossRef Google Scholar

    [12] S.-B. Hsu, L. Mei and F.-B. Wang, On a nonlocal reaction-diffusion-advection system modelling the growth of phytoplankton with cell quota structure, J. Differential Equations, 2015, 259(10), 5353–5378. doi: 10.1016/j.jde.2015.06.030

    CrossRef Google Scholar

    [13] R. Huang, M. Mei and Y. Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity, Discrete Contin. Dyn. Syst., 2012, 32(10), 3621–3649. doi: 10.3934/dcds.2012.32.3621

    CrossRef Google Scholar

    [14] R. Huang, M. Mei and Z. Wang, Threshold convergence results for a nonlocal time-delayed diffusion equation, J. Differential Equations, 2023, 364(15), 76–106.

    Google Scholar

    [15] R. Huang, M. Mei, K. Zhang, et al., Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations, Discrete Contin. Dyn. Syst., 2016, 36(3), 1331–1353.

    Google Scholar

    [16] L. I. Ignat and J. D. Rossi, A nonlocal convection-diffusion equation, J. Funct. Anal., 2007, 251(2), 399–437. doi: 10.1016/j.jfa.2007.07.013

    CrossRef Google Scholar

    [17] L. I. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods, J. Math. Pures Appl., 2009, 92(2), 163–187. doi: 10.1016/j.matpur.2009.04.009

    CrossRef Google Scholar

    [18] Z. Jia, Global boundedness of weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and nonlinear production, Discrete Contin. Dyn. Syst. Ser. B, 2023, 28(9), 4847–4863. doi: 10.3934/dcdsb.2023044

    CrossRef Google Scholar

    [19] B. Karami and D. Shahsavari, Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers, Smart. Struct. Syst., 2019, 23(3), 215–225.

    Google Scholar

    [20] D. Y. Khusainov, A. F. Ivanov and I. V. Kovarzh, Solution of one heat equation with delay, Nonlinear Oscil., 2009, 12(2), 260–282. doi: 10.1007/s11072-009-0075-3

    CrossRef Google Scholar

    [21] A. Kolmogorov, I. Petrovskii and N. Piskunov, Study of a diffusion equation that is related to the growth of a quality of matter and its application to a biological problem, Mosc. Univ. Math. Bull., 1937, 1, 1–25.

    Google Scholar

    [22] C. T. Lee, M. F. Hoopes, J. Diehl, et al., Non-local concepts and models in biology, J. Theoret. Biol., 2001, 210(2), 201–219. doi: 10.1006/jtbi.2000.2287

    CrossRef Google Scholar

    [23] C. Lei, H. Li and Y. Zhao, Dynamical behavior of a reaction-diffusion SEIR epidemic model with mass action infection mechanism in a heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 2024, 29(7), 3163–3198. doi: 10.3934/dcdsb.2023216

    CrossRef Google Scholar

    [24] W.-T. Li, Y.-J. Sun and Z.-C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 2010, 11(4), 2302–2313. doi: 10.1016/j.nonrwa.2009.07.005

    CrossRef Google Scholar

    [25] W.-T. Li, J.-B. Wang and X.-Q. Zhao, Spatial dynamics of a nonlocal dispersal population model in a shifting environment, J. Nonlinear Sci., 2018, 28(4), 1189–1219. doi: 10.1007/s00332-018-9445-2

    CrossRef Google Scholar

    [26] G. Lin and W.-T. Li, Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays, J. Differential Equations, 2008, 244(3), 487–513. doi: 10.1016/j.jde.2007.10.019

    CrossRef Google Scholar

    [27] Z. Ma, X. Wu and R. Yuan, Nonlinear stability of traveling wavefronts for competitive-cooperative Lotka-Volterra systems of three species, Appl. Math. Comput., 2017, 315(15), 331–346.

    Google Scholar

    [28] Z. Ma, X. Wu, R. Yuan, et al., Multidimensional stability of planar waves for delayed reaction-diffusion equation with nonlocal diffusion, J. Appl. Anal. Comput., 2019, 9(3), 962–980.

    Google Scholar

    [29] Z. Ma, R. Yuan, Y. Wang, et al., Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system, Commun. Pure Appl. Anal., 2019, 18(4), 2069–2092. doi: 10.3934/cpaa.2019093

    CrossRef Google Scholar

    [30] L. Mei and X. Zhang, On a nonlocal reaction-diffusion-advection system modeling phytoplankton growth with light and nutrients, Discrete Contin. Dyn. Syst. Ser. B, 2012, 17(1), 221–243.

    Google Scholar

    [31] M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 2010, 42(6), 2762–2790. doi: 10.1137/090776342

    CrossRef Google Scholar

    [32] M. Mei, J. W.-H. So, M. Y. Li, et al., Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134(3), 579–594. doi: 10.1017/S0308210500003358

    CrossRef Google Scholar

    [33] J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989.

    Google Scholar

    [34] S. Pan, W.-T. Li and G. Lin, Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay, Nonlinear Anal., 2010, 72(6), 3150–3158. doi: 10.1016/j.na.2009.12.008

    CrossRef Google Scholar

    [35] S. Ruan and X.-Q. Zhao, Persistence and extinction in two species reaction-diffusion systems with delays, J. Differential Equations, 1999, 156(1), 71–92. doi: 10.1006/jdeq.1998.3599

    CrossRef Google Scholar

    [36] M. E. Schonbek, Uniform decay rates for parabolic conservation laws, Nonlinear Anal., 1986, 10(9), 943–956. doi: 10.1016/0362-546X(86)90080-5

    CrossRef Google Scholar

    [37] Y. Sun and H. Yu, A unified non-local fluid transport model for heterogeneous saturated porous media, Comput. Meth. Appl. Mech. Eng., 2022, 389(1), 114294.

    Google Scholar

    [38] Y. Tang and F. Li, Multiple stable states for a class of predator-prey systems with two harvesting rates, J. Appl. Anal. Comput., 2024, 14(1), 506–514.

    Google Scholar

    [39] F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi, et al., Nonlocal Diffusion Problems, American Mathematical Society, Providence, RI, 2010.

    Google Scholar

    [40] J. Wang, Z. Yu and Y. Meng, Existence and stability of invasion traveling waves for a competition system with random vs. nonlocal dispersals, Int. J. Biomath., 2019, 12(1), 1950004. doi: 10.1142/S1793524519500049

    CrossRef Google Scholar

    [41] M. Wang and G. Lv, Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delays, Nonlinearity, 2010, 23(7), 1609–1630. doi: 10.1088/0951-7715/23/7/005

    CrossRef Google Scholar

    [42] M.-L. Wang, G.-B. Zhang and P. He, Invasion traveling waves of a three species Lotka-Volterra competitive system with nonlocal dispersal, Commun. Nonlinear Sci. Numer. Simul., 2024, 132, 107939. doi: 10.1016/j.cnsns.2024.107939

    CrossRef Google Scholar

    [43] X. Wang, Z. Wang and Z. Jia, Global weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source, Acta Math. Sci., 2024, 44(3), 909–924. doi: 10.1007/s10473-024-0308-7

    CrossRef Google Scholar

    [44] M. Xu, Nonlocal heat conduction in silicon nanowires and carbon nanotubes, Heat Mass Transf., 2020, 57(5), 843–852.

    Google Scholar

    [45] M. Xu, S. Liu and Y. Lou, Persistence and extinction in the anti-symmetric Lotka-Volterra systems, J. Differential Equations, 2024, 387(5), 299–323.

    Google Scholar

    [46] W.-B. Xu, W.-T. Li and G. Lin, Nonlocal dispersal cooperative systems: Acceleration propagation among species, J. Differential Equations, 2020, 268(3), 1081–1105. doi: 10.1016/j.jde.2019.08.039

    CrossRef Google Scholar

    [47] Z.-J. Yang and G.-B. Zhang, Speed selection for a Lotka-Volterra competitive system with local vs. nonlocal diffusions, Qual. Theory Dyn. Syst., 2023, 22(2), 43–59. doi: 10.1007/s12346-023-00747-6

    CrossRef Google Scholar

    [48] Z.-X. Yu and R. Yuan, Travelling wave solutions in nonlocal reaction-diffusion systems with delays and applications, ANZIAM J., 2009, 51(1), 49–66. doi: 10.1017/S1446181109000406

    CrossRef Google Scholar

    [49] A. M. Zenkour, A. E. Abouelregal, K. A. Alnefaie, et al., Nonlocal thermoelasticity theory for thermal-shock nanobeams with temperature-dependent thermal conductivity, J. Therm. Stresses, 2015, 38(9), 1049–1067. doi: 10.1080/01495739.2015.1038490

    CrossRef Google Scholar

    [50] G.-B. Zhang and R. Ma, Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity, Z. Angew. Math. Phys., 2013, 65(5), 819–844.

    Google Scholar

    [51] X. Zhang and R. Yuan, Stochastic bifurcation and density function analysis of a stochastic logistic equation with distributed delay and strong kernel, Int. J. Biomath., 2022, 16(03), 2250085.

    Google Scholar

    [52] X. Zhao and R. Yang, Dynamical property analysis of a delayed diffusive predator-prey model with fear effect, J. Nonl. Mod. Anal., 2023, 5(1), 1–23.

    Google Scholar

    [53] C. Zhu and Y. Peng, Stability and bifurcation analysis in a nonlocal diffusive predator-prey model with hunting cooperation, J. Nonl. Mod. Anal., 2023, 5(1), 95–107.

    Google Scholar

Figures(8)

Article Metrics

Article views(350) PDF downloads(120) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint