2025 Volume 15 Issue 3
Article Contents

Shuxin Zhang, Fangqi Chen, Zejun Wang. THE DISSIPATIVE CONDITION OF THE FIRST ORDER 3 × 3 HYPERBOLIC SYSTEM WITH CONSTANT COEFFICIENTS[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1483-1502. doi: 10.11948/20240270
Citation: Shuxin Zhang, Fangqi Chen, Zejun Wang. THE DISSIPATIVE CONDITION OF THE FIRST ORDER 3 × 3 HYPERBOLIC SYSTEM WITH CONSTANT COEFFICIENTS[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1483-1502. doi: 10.11948/20240270

THE DISSIPATIVE CONDITION OF THE FIRST ORDER 3 × 3 HYPERBOLIC SYSTEM WITH CONSTANT COEFFICIENTS

  • In this paper, we study the dissipative property of the first order $3 \times 3$ hyperbolic system with constant coefficients. For the corresponding $n\times n$ system, when the coefficients matrices are symmetric, it has been studied in [16] and the well-know Kawashima-Shizuta condition is obtained. When $n=3$ and for asymmetric system, we give a sufficient condition for the system to be strictly dissipative.

    MSC: 35L40, 35L45, 35L65
  • 加载中
  • [1] L. V. Ahlfors, Complex Analysis Third Edition, New York, McGraw-Hill, 1979.

    Google Scholar

    [2] D. Amadori and G. Guerra, Global weak solutions for systems of balance laws, Appl. Math. Letters, 1999, 12(6), 123–127. doi: 10.1016/S0893-9659(99)00090-7

    CrossRef Google Scholar

    [3] C. M. Dafermos, BV solutions for hyperbolic systems of balance laws with relaxation, J. Differ. Equ., 2013, 255(8), 2521–2533. doi: 10.1016/j.jde.2013.07.002

    CrossRef Google Scholar

    [4] C. M. Dafermos and L. Hsiao, Hyperbolic systems of balance laws with inhomogeneity and dissipation, Indiana Univ. Math. J., 1982, 31, 471–491. doi: 10.1512/iumj.1982.31.31039

    CrossRef Google Scholar

    [5] R. Duan and H. Ma, Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity, Indiana Univ. Math. J., 2008, 57(5), 2299–2319. doi: 10.1512/iumj.2008.57.3326

    CrossRef Google Scholar

    [6] K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math., 1954, 7, 345–392. doi: 10.1002/cpa.3160070206

    CrossRef Google Scholar

    [7] Z. Gao, Z. Tan and G. Wu, Global existence and convergence rates of smooth solutions for the 3-D compressible magnetohy-drodynamic equations without heat conductivity, Acta Math. Sci. Ser. B (Engl. Ed. ), 2014, 34(1), 93–106.

    Google Scholar

    [8] B. Hanouzet and R. Natalini, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Arch. Ration. Mech. Anal., 2003, 169(2), 89–117. doi: 10.1007/s00205-003-0257-6

    CrossRef Google Scholar

    [9] L. Hsiao and T. Li, Global smooth solution of Cauchy problems for a class of quasilinear hyperbolic systems, Chin. Ann. Math., Ser. B, 1983, 4(1), 107–115.

    Google Scholar

    [10] B. Karine and Z. Enrique, Large time asymptotics for partially dissipative hyperbolic systems, Arch. Ration. Mech. Anal., 2011, 199(1), 177–227. doi: 10.1007/s00205-010-0321-y

    CrossRef Google Scholar

    [11] S. Kawashima, System of a Hyperbolic-Parabolic Composite Type with Applications to the Equations of Manetohydro-Dynamics[Ph. D. Thesis], Kyoto, Kyoto University, 1983.

    Google Scholar

    [12] S. Kawashima and W. Yong, Dissipative structure and entropy for hyperbolic systems of balancelaws, Arch. Ration. Mech. Anal., 2004, 174(3), 345–364. doi: 10.1007/s00205-004-0330-9

    CrossRef Google Scholar

    [13] S. Kawashima and W. Yong, Decay estimates forhyperbolic balance laws, Z. Anal. Anwend., 2009, 28(1), 1–33. doi: 10.4171/zaa/1369

    CrossRef Google Scholar

    [14] T. Li, Global classical solutions for quasilinear hyperbolic systems, Masson, Paris, RAM Res. Appl. Math., 1994, 135–165.

    Google Scholar

    [15] T. Liu and W. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimensions, Comm. Math. Phys., 1998, 196(1), 145–173. doi: 10.1007/s002200050418

    CrossRef Google Scholar

    [16] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 1985, 14(2), 249–275.

    Google Scholar

    [17] T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of Electro-Magneto-Fluid dynamics, Japan J. Appl. Math., 1984, 1(2), 435–457. doi: 10.1007/BF03167068

    CrossRef Google Scholar

    [18] W. Wang and Z. Wang, The pointwise estimates to solutions for 1-dimensional linear thermoelastic system with second sound, J. Math. Anal. Appl., 2007, 326(2), 1061–1075. doi: 10.1016/j.jmaa.2006.03.038

    CrossRef Google Scholar

    [19] W. Wang and X. Xu, Global well-posedness for systems of hyperbolic-parabolic composite type with center manifold, J. Math. Anal. Appl., 2020, 490(2), 124320. doi: 10.1016/j.jmaa.2020.124320

    CrossRef Google Scholar

    [20] W. Wang and T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions, J. Differential Equation, 2001, 173(2), 410–450. doi: 10.1006/jdeq.2000.3937

    CrossRef Google Scholar

    [21] W. Wang and X. Yang, The pointwise estimates of solutions for Navier-Stokes equations in even space-dimensions, J. Hyperbolic Differ. Equ., 2005, 2(3), 673–695. doi: 10.1142/S0219891605000580

    CrossRef Google Scholar

    [22] G. Wu, Z. Tan and J. Huang, Global existence and large time behavior for the system of compressible adiabatic flow through porous media in $\mathbb{R}^3$, J. Differ. Equ., 2013, 255(8), 865–880.

    $\mathbb{R}^3$" target="_blank">Google Scholar

    [23] S. Zhang, F. Chen and Z. Wang, The dissipative property of the first order $2\times 2$ hyperbolic system with constant coefficients, Comm. Pure Appl. Anal., 2023, 22(5), 1565–1584. doi: 10.3934/cpaa.2023038

    CrossRef $2\times 2$ hyperbolic system with constant coefficients" target="_blank">Google Scholar

    [24] Y. Zhang and C. Zhu, Global existence and optimal convergence rates for the strong solutions in $H^2$ to the 3D viscous liquid-gas two-phase flow model, J. Differential Equation, 2015, 258(7), 2315–2338. doi: 10.1016/j.jde.2014.12.008

    CrossRef $H^2$ to the 3D viscous liquid-gas two-phase flow model" target="_blank">Google Scholar

Article Metrics

Article views(253) PDF downloads(84) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint