2025 Volume 15 Issue 5
Article Contents

Chi Xu. GLOBAL BOUNDEDNESS IN A QUASILINEAR CHEMOTAXIS-CONSUMPTION SYSTEM WITH SIGNAL-DEPENDENT MOTILITY AND SUPER-QUADRATIC DAMPING[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2570-2588. doi: 10.11948/20240271
Citation: Chi Xu. GLOBAL BOUNDEDNESS IN A QUASILINEAR CHEMOTAXIS-CONSUMPTION SYSTEM WITH SIGNAL-DEPENDENT MOTILITY AND SUPER-QUADRATIC DAMPING[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2570-2588. doi: 10.11948/20240271

GLOBAL BOUNDEDNESS IN A QUASILINEAR CHEMOTAXIS-CONSUMPTION SYSTEM WITH SIGNAL-DEPENDENT MOTILITY AND SUPER-QUADRATIC DAMPING

  • Corresponding author: Email: XuChi1993@126.com(C. Xu)
  • Fund Project: The author was supported by the Key Program of the University Natural Science Research Fund of Anhui Provence (2022AH050826)
  • In this paper, we consider a quasilinear chemotaxis-consumption model

    $ \left\{ \begin{array}{lll} u_t=\Delta (v^{\alpha}u^{m})+ru-\mu u^{l},\quad &x\in\Omega,\; t>0,\\ v_t=\Delta v-uv, &x\in\Omega,\; t>0 \end{array} \right. $

    within a smoothly bounded domain $ \Omega\subset\mathbb{R}^n $ under homogeneous Neumann boundary conditions, where the parameters $ \alpha, r, \mu>0 $ and $ l, m>1 $. For any sufficiently regular initial data and parameters $ l, m>1 $ with $ l>m+1 $, it is shown that the aforementioned system possesses at least one global weak solution with a boundedness property

    $ \|u(\cdot,t)\|_{L^{p}(\Omega)}+\|v(\cdot,t)\|_{W^{1,\infty}(\Omega)}\leq C $

    for all $ p\geq 2 $ and $ t>0 $. This finding indicates the regularizing effect of super-quadratic damping of a logistic-type source under strong degeneracy of signal-dependent motility, even though the cross-diffusion is simultaneously enhanced.

    MSC: 35A01, 35K55, 35K65, 92C17, 35Q92
  • 加载中
  • [1] N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 2015, 25(9), 1663–1763. doi: 10.1142/S021820251550044X

    CrossRef Google Scholar

    [2] Z. Chen and G. Li, Global weak solution in a singular taxis-type system with signal consumption, Nonlinear Anal., 2024, 78, 104073. doi: 10.1016/j.nonrwa.2024.104073

    CrossRef Google Scholar

    [3] L. Desvillettes, P. Laurençot, A. Trescases and M. Winkler, Weak solutions to triangular cross-diffusion systems modeling chemotaxis with local sensing, Nonlinear Anal., 2023, 226, 113153. doi: 10.1016/j.na.2022.113153

    CrossRef Google Scholar

    [4] X. Fu, L. Tang, C. Liu, J. Huang, T. Hwa and P. Lenz, Stripe formation in bacterial system with density-suppressed motility, Phys. Rev. Lett., 2012, 39, 1185–1284.

    Google Scholar

    [5] K. Fujie and J. Jiang, Comparison methods for a Keller-Segel-type model of pattern formations with density-suppressed motilities, Calc. Var. Partial Differential Equations, 2021, 60, 1–37. doi: 10.1007/s00526-020-01865-8

    CrossRef Google Scholar

    [6] K. Fujie and T. Senba, Global boundedness of solutions to a parabolic-parabolic chemotaxis system with local sensing in higher dimensions, Nonlinearity, 2022, 35, 3777–3811. doi: 10.1088/1361-6544/ac6659

    CrossRef Google Scholar

    [7] K. Fujie and T. Senba, Global existence and infinite time blow-up of classical solutions to chemotaxis systems of local sensing in higher dimensions, Nonlinear Anal., 2022, 222, 112987. doi: 10.1016/j.na.2022.112987

    CrossRef Google Scholar

    [8] H. Jin, Y. Kim and Z. Wang, Boundedness, stabilization and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., 2018, 78(3), 1632–1657. doi: 10.1137/17M1144647

    CrossRef Google Scholar

    [9] H. Jin and Z. Wang, Critical mass on the Keller-Segel system with signal-dependent motility, Proc. Amer. Math. Soc., 2020, 148(11), 4855–4873. doi: 10.1090/proc/15124

    CrossRef Google Scholar

    [10] J. Lankeit, Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, J. Differential Equations, 2017, 262, 4052–4084. doi: 10.1016/j.jde.2016.12.007

    CrossRef Google Scholar

    [11] J. Lankeit and M. Winkler, Depleting the signal: Analysis of chemotaxis-consumption models–A survey, Stud. Appl. Math., 2023, 151(4), 1197–1229. doi: 10.1111/sapm.12625

    CrossRef Google Scholar

    [12] P. Laurençot, Large time convergence for a chemotaxis model with degenerate local sensing and consumption, Bull. Korean Math. Soc., 2024, 61(2), 479–488.

    Google Scholar

    [13] D. Li and J. Zhan, Global boundedness and large time behavior of solutions to a chemotaxis-consumption system with signal-dependent motility, Z. Angew. Math. Phys., 2021, 72, 57. doi: 10.1007/s00033-021-01493-y

    CrossRef Google Scholar

    [14] G. Li and Y. Lou, Roles of density-related diffusion and signal-dependent motilities in a chemotaxis-consumption system, Calc. Var. and Partial Differential Equations, 2024, 63, 195. doi: 10.1007/s00526-024-02802-9

    CrossRef Google Scholar

    [15] G. Li and L. Wang, Boundedness in a taxis-consumption system involving signal-dependent motilities and concurrent enhancement of density-determined diffusion and cross-diffusion, Z. Angew. Math. Phys., 2023, 74, 92. doi: 10.1007/s00033-023-01983-1

    CrossRef Google Scholar

    [16] G. Li and M. Winkler, Refined regularity analysis for a Keller-Segel-consumption system involving signal-dependent motilities, Appl. Anal., 2023, 1–20.

    Google Scholar

    [17] G. Li and M. Winkler, Relaxation in a Keller-Segel-consumption system involving signal-dependent motilities, Commum. Math. Sci., 2023, 21, 299–322. doi: 10.4310/CMS.2023.v21.n2.a1

    CrossRef Google Scholar

    [18] G. Lieberman, Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions, Ann. Mat. Pura Appl., 1987, 148, 319–351.

    Google Scholar

    [19] W. Lv, Global existence for a class of chemotaxis-consumption systems with signal-dependent motility and generalized logistic source, Nonlinear Anal., 2020, 56, 103160. doi: 10.1016/j.nonrwa.2020.103160

    CrossRef Google Scholar

    [20] W. Lv and Q. Wang, An $n$-dimensional chemotaxis system with signal-dependent motility and generalized logistic source: Global existence and asymptotic stabilization, Proc. Roy. Soc. Edinburgh Sect. A, 2021, 151(2), 821–841. doi: 10.1017/prm.2020.38

    CrossRef Google Scholar

    [21] W. Lv and Z. Wang, Logistic damping effect in chemotaxis models with density-suppressed motility, Adv. Nonlinear Anal., 2023, 12(1), 336–355.

    Google Scholar

    [22] M. Ma, R. Peng and Z. Wang, Stationary and non-stationary patterns of the density-suppressed motility model, Phys. D, 2020, 402, 132259. doi: 10.1016/j.physd.2019.132259

    CrossRef Google Scholar

    [23] M. Porzio and V. Vespri, Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations, 1993, 103(1), 146–178. doi: 10.1006/jdeq.1993.1045

    CrossRef Google Scholar

    [24] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subscritical sensitivity, J. Differential Equations, 2012, 252, 692–715. doi: 10.1016/j.jde.2011.08.019

    CrossRef Google Scholar

    [25] Y. Tao and M. Winkler, Global solution to a Keller-Segel-consumption system involving singularly signal-dependent motilities in domain of arbitrary dimension, J. Differential Equations, 2023, 343, 390–418. doi: 10.1016/j.jde.2022.10.022

    CrossRef Google Scholar

    [26] J. Wang and M. Wang, Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth, J. Math. Phys., 2019, 60, 011507. doi: 10.1063/1.5061738

    CrossRef Google Scholar

    [27] L. Wang, Improvement of conditions for boundedness in a chemotaxis consumption system with density-dependent motility, Appl. Math. Lett., 2022, 125, 107724. doi: 10.1016/j.aml.2021.107724

    CrossRef Google Scholar

    [28] L. Wang, Global dynamics for a chemotaxis consumption system with signal-dependent motility and logistic source, J. Differential Equations, 2023, 348, 191–222. doi: 10.1016/j.jde.2022.12.004

    CrossRef Google Scholar

    [29] L. Wang and R. Huang, Global classical solution to a chemotaxis consumption model involving singularly signal-dependent motility and logistic source, Nonlinear Anal., Real World Appl., 2024, 80, 104174. doi: 10.1016/j.nonrwa.2024.104174

    CrossRef Google Scholar

    [30] M. Winkler, The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: Global large-data solutions and their relaxation properties, Math. Models Methods Appl. Sci., 2016, 26, 987–1024. doi: 10.1142/S0218202516500238

    CrossRef Google Scholar

    [31] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 2010, 248, 2889–2905. doi: 10.1016/j.jde.2010.02.008

    CrossRef Google Scholar

    [32] M. Winkler, Small-signal solutions of a two-dimensional doubly degenerate taxis system modeling bacterial motion in nutrient-poor environment, Nonlinear Anal. Real World Appl., 2022, 63, 103407. doi: 10.1016/j.nonrwa.2021.103407

    CrossRef Google Scholar

    [33] M. Winkler, Approaching logarithmic singularities in quasilinear chemotaxis-consum-ption systems with signal-dependent sensitivities, Discrete Contin. Dyn. Ser B., 2022, 27(11), 6565–6587. doi: 10.3934/dcdsb.2022009

    CrossRef Google Scholar

    [34] M. Winkler, Stabilization despite pervasive strong cross-degeneracies in a nonlinear diffusion model for migration-consumption interation, Nonlinearity, 2023, 36(8), 4438–4469. doi: 10.1088/1361-6544/ace22e

    CrossRef Google Scholar

    [35] M. Winkler, A quantitative strong parabolic maximum principle and application to a taxis-type migration-consumption model involving signal-dependent degenerate diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2024, 41, 95–127.

    Google Scholar

    [36] M. Winkler, Can simultaneous density-determined enhancement of diffusion and cross-diffusion foster boundedness in Keller-Segel type system involving signal-dependent motilities?, Nonlinearity, 2020, 33(12), 6590–6632. doi: 10.1088/1361-6544/ab9bae

    CrossRef Google Scholar

Article Metrics

Article views(53) PDF downloads(64) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint