2025 Volume 15 Issue 5
Article Contents

Yan Zhang, Bang-Sheng Han, Hong-Lei Wei, Yinghui Yang. SPATIAL DYNAMICS OF THE ADVECTIVE REACTION-DIFFUSION EQUATION ON FUNNEL-SHAPED DOMAINS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2551-2569. doi: 10.11948/20240267
Citation: Yan Zhang, Bang-Sheng Han, Hong-Lei Wei, Yinghui Yang. SPATIAL DYNAMICS OF THE ADVECTIVE REACTION-DIFFUSION EQUATION ON FUNNEL-SHAPED DOMAINS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2551-2569. doi: 10.11948/20240267

SPATIAL DYNAMICS OF THE ADVECTIVE REACTION-DIFFUSION EQUATION ON FUNNEL-SHAPED DOMAINS

  • This paper is concerned with the entire solution of the advective reaction-diffusion equation with the bistable nonlinear reaction term on funnel-shaped domains. We focus on the well-posedness and long-time behavior of the entire solution. Because of the impact of advection, the previous super and sub-solutions are no longer applicable, so we study the existence of the entire solution behaving as a planar front by constructing appropriate super-solutions and sub-solutions. In addition, we show the uniqueness and Lyapunov stability of the entire solution. This is probably the first study of the advective reaction-diffusion on funnel-shaped domains.

    MSC: 35B08, 35C07, 35K40, 35K57
  • 加载中
  • [1] H. Berestycki, The influence of advection on the propagation of fronts in reaction-diffusion equations, Nonlinear PDE's in Condensed Matter and Reactive Flows, Dordrecht: Springer Netherlands, 2002, 11–48.

    Google Scholar

    [2] H. Berestycki, J. Bouhours and G. Chapuisat, Front blocking and propagation in cylinders with varying cross section, Calc. Var. Partial Differential Equations, 2016, 55(3), 32 pp.

    Google Scholar

    [3] H. Berestycki and F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math., 2002, 55(8), 949–1032. doi: 10.1002/cpa.3022

    CrossRef Google Scholar

    [4] H. Berestycki, F. Hamel and H. Matano, Bistable traveling waves around an obstacle, Comm. Pure Appl. Math., 2009, 62(6), 729–788. doi: 10.1002/cpa.20275

    CrossRef Google Scholar

    [5] H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems, I. Periodic Framework. J. Eur. Math. Soc., 2005, 7(2), 173–213.

    Google Scholar

    [6] H. Berestycki and L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 1992, 9(5), 497–572. doi: 10.1016/s0294-1449(16)30229-3

    CrossRef Google Scholar

    [7] J. Brasseur and J. Coville, Propagation phenomena with nonlocal diffusion in presence of an obstacle, J. Dynam. Differential Equations, 2023, 35(1), 237–301. doi: 10.1007/s10884-021-09988-y

    CrossRef Google Scholar

    [8] Z. -H. Bu and Z. -C. Wang, Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media, Commun. Pure Appl. Anal., 2016, 15(1), 139–160.

    Google Scholar

    [9] G. Chapuisat and E. Grenier, Existence and nonexistence of traveling wave solutions for a bistable reaction-diffusion equation in an infinite cylinder whose diameter is suddenly increased, Comm. Partial Differential Equations, 2005, 30 (10–12), 1805–1816.

    Google Scholar

    [10] C. Cheng and Z. Zheng, Dynamics and spreading speed of a reaction-diffusion system with advection modeling West Nile virus, J. Math. Anal. Appl., 2021, 493(1), 24 pp.

    Google Scholar

    [11] S. Cox and G. Gottwald, A bistable reaction-diffusion system in a stretching flow, Phys. D, 2006, 216(2), 307–318. doi: 10.1016/j.physd.2006.03.007

    CrossRef Google Scholar

    [12] H. Guo, Transition fronts in unbounded domains with multiple branches, Calc. Var. Partial Differential Equations, 2020, 59(5), 40 pp.

    Google Scholar

    [13] H. Guo, F. Hamel and W. -J. Sheng, On the mean speed of bistable transition fronts in unbounded domains, J. Math. Pures Appl., 2020, 136(9), 92–157.

    Google Scholar

    [14] F. Hamel and M. Zhang, Reaction-diffusion fronts in funnel-shaped domains, Adv. Math., 2023, 412, 56 pp.

    Google Scholar

    [15] B. -S. Han, M. -X. Chang, H. Wei and Y. Yang, Curved fronts for a Belousov-Zhabotinskii system in exterior domains, J. Differential Equations, 2025, 416(2), 1660–1695.

    Google Scholar

    [16] B. -S. Han and D. Kong, Propagation dynamics of a nonlocal reaction-diffusion system, Discrete Contin. Dyn. Syst., 2023, 43(7), 2756–2780. doi: 10.3934/dcds.2023028

    CrossRef Google Scholar

    [17] J. Indekeu and R. Smets, Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations, J. Phys. A., 2017, 50(31), 12 pp.

    Google Scholar

    [18] F. -J. Jia and Z. -C. Wang, Stability of entire solutions emanating from bistable planar traveling waves in exterior domains, Appl. Math. Lett., 2022, 132, 8 pp.

    Google Scholar

    [19] W. -T. Li, N. -W. Liu and Z. -C. Wang, Entire solutions in reaction-advection-diffusion equations in cylinders, J. Math. Pures Appl., 2008, 90(5), 492–504. doi: 10.1016/j.matpur.2008.07.002

    CrossRef Google Scholar

    [20] W. -T. Li, J. -B. Wang and L. Zhang, Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats, J. Differential Equations, 2016, 261(4), 2472–2501. doi: 10.1016/j.jde.2016.05.006

    CrossRef Google Scholar

    [21] X. -M. Li and L. Li, Entire solutions of bistable reaction-diffusion systems in unbounded domain with multiple cylindrical branches, Discrete and Continuous Dynamical Systems, 2024, 29(9), 3856–3886. doi: 10.3934/dcdsb.2024026

    CrossRef Google Scholar

    [22] N. -W. Liu and W. -T. Li, Entire solutions in reaction-advection-diffusion equations with bistable nonlinearities in heterogeneous media, Sci. China Math., 2010, 53(7), 1775–1786.

    Google Scholar

    [23] N. -W. Liu, W. -T. Li and Z. -C. Wang, Entire solutions of reaction-advection-diffusion equations with bistable nonlinearity in cylinders, J. Differential Equations, 2009, 246(11), 4249–4267.

    Google Scholar

    [24] N. -W. Liu, W. -T. Li and Z. -C. Wang, Pulsating type entire solutions of monostable reaction-advection-diffusion equations in periodic excitable media, Nonlinear Anal., 2012, 75(4), 1869–1880.

    Google Scholar

    [25] Z. Ma and Z. -C. Wang, The trichotomy of solutions and the description of threshold solutions for periodic parabolic equations in cylinders, J. Dynam. Differential Equations, 2023, 35(4), 3665–3689. doi: 10.1007/s10884-021-10124-z?utm_content=meta

    CrossRef Google Scholar

    [26] A. Pauthier, Entire solution in cylinder-like domains for a bistable reaction-diffusion equation, J. Dynam. Differential Equations, 2018, 30(3), 1273–1293.

    Google Scholar

    [27] J. Wang and W. Li, Pulsating waves and entire solutions for a spatially periodic nonlocal dispersal system with a quiescent stage, Sci. China Math., 2019, 62(12), 2505–2526.

    Google Scholar

    [28] J. Wang, X. Tong and Y. Song, Dynamics and pattern formation in a reaction-diffusion-advection mussel-algae model, Z. Angew. Math. Phys., 2022, 73(3), 21 pp.

    Google Scholar

    [29] Y. Wang, J. Shi and J. Wang, Persistence and extinction of population in reaction-diffusion-advection model with strong Allee effect growth, J. Math. Biol., 2019, 78(7), 2093–2140.

    Google Scholar

    [30] S. -L. Wu, L. Pang and S. Ruan, Propagation dynamics in periodic predator-prey systems with nonlocal dispersal, J. Math. Pures Appl., 2023, 170, 57–95.

    Google Scholar

    [31] S. -L. Wu, X. -Q. Zhao and C. -H. Hsu, Propagation dynamics for a time-periodic epidemic model in discrete media, J. Differential Equations, 2023, 374, 699–736.

    Google Scholar

    [32] T. Xiang, Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl., 2018, 39, 278–299.

    Google Scholar

    [33] Z. Zhao, L. Li and Z. Feng, Traveling wavefronts for density-dependent diffusion reaction convection equation with time delay, Math. Methods Appl. Sci., 2024, 47(5), 3101–3114.

    Google Scholar

    [34] R. Zhou, S. -L. Wu and X. -X. Bao, Propagation dynamics for space-time periodic and degenerate systems with nonlocal dispersal and delay, Journal of Nonlinear Science, 2024, 34–69.

    Google Scholar

Figures(1)

Article Metrics

Article views(71) PDF downloads(32) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint