Citation: | Jakgrit Sompong, Ekkarath Thailert, Sotiris K. Ntouyas, Ugyen Samdrup Tshering. EXISTENCE OF SOLUTIONS AND ULAM STABILITY OF HILFER-HADAMARD SEQUENTIAL FRACTIONAL DIFFERENTIAL EQUATIONS WITH MULTI-POINT FRACTIONAL INTEGRAL BOUNDARY VALUE PROBLEM[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1536-1562. doi: 10.11948/20240290 |
In this paper, we study the existence and uniqueness of solutions for the boundary value problem of Hilfer-Hadamard sequential fractional differential equations via fixed point theorems. The existence of a solution is proved by the Krasnoselskii fixed point theorem, the Leray-Schauder alternative, and the Leray-Schauder nonlinear alternative fixed point theorem. Moreover, we prove the uniqueness of the solution using the Banach contraction principle. We also discuss the Ulam-Hyers, Ulam-Hyers-Rassias, generalized Ulam-Hyers and generalized Ulam-Hyers-Rassias stability for the problem. Illustrative examples are also provided.
[1] | S. Abbas, M. Benchohra, J. Lagreg, A. Alsaedi and Y. Zhou. Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, Adv. Differ. Equ., 2017, 180. |
[2] | B. Ahmad, A. Alsaedi, S. K. Ntouyas and J. Tariboon, Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, Springer, Cham, Switzerland, 2017. http://dx.doi.org/10.1007/978-3-319-52141-1 doi: 10.1007/978-3-319-52141-1 |
[3] | L. Almaghamsi and A. Salem, Fractional Langevin equations with infinite-point boundary condition: Application to fractional harmonic oscillator, Journal of Applied Analysis and Computation, 2023, 13(6), 3504–3523. |
[4] | S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas and J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bulletin of the Korean Mathematical Society, 2018, 55(6), 1639–1657. |
[5] | L. P. Castro and A. S. Silva, On the existence and stability of solutions for a class of frcational Riemann-Liouville initial value problems, Mathematics, 2023, 11, 297. doi: 10.3390/math11020297 |
[6] | K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985. |
[7] | K. Diethelm, The Analysis of Fractional Differential Equations, Springer, New York, 2024. |
[8] | E. El-Hadya and S. Ögrekçic, On Hyers-Ulam-Rassias stability of fractional differential equations with Caputo derivative, J. Math. Computer Sci., 2021, 22, 325–332. |
[9] | A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. http://dx.doi.org/10.1007/978-0-387-21593-8. doi: 10.1007/978-0-387-21593-8 |
[10] | A. Guerfi and A. Ardjouni, Existence, uniqueness, continuous dependence and Ulam stability of mild solutions for an iterative fractional differential equation, Cubo, 2022, 24(1), 83–94. doi: 10.4067/S0719-06462022000100083 |
[11] | R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. |
[12] | R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, J. Chem. Phys., 2002, 284, 399–408. |
[13] | A. A. Kilbas and H. M. Srivastava and J. J. Trujillo, Theory and applications of the fractional differential equations, North-Holland Mathematics Studies, 2006, 204. |
[14] | M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, 1955, 10, 123–127. |
[15] | A. Lachouri and A. Ardjouni, The existence and Ulam-Hyers stability results for generalized Hilfer fractional integro-differential equations with nonlocal integral boundary conditions, Adv. Theory Nonlinear Anal. Appl., 2022, 6(1), 101–117. |
[16] | V. Lakshmikantham, S. Leela and J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, 2009. |
[17] | H. Liu and Y. Li, Hyers–Ulam stability of linear fractional differential equations with variable coefficients, Adv. Differ. Equ., 2020, 404. http://dx.doi.org/10.1186/s13662-020-02863-y. doi: 10.1186/s13662-020-02863-y |
[18] | A. B. Makhlouf and E. El-Hady, Novel stability results for Caputo fractional differential equations, Math. Prob. Eng., 2021, Article ID 9817668. https://doi.org/10.1155/2021/9817668. |
[19] | K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993. |
[20] | S. A. Murad and Z. A. Ameen, Existence and Ulam stability for fractional differential equations of mixed Caputo-Riemann derivatives, AIMS Math., 2021, 7, 6404–6419. |
[21] | J. Nan, W. Hu, Y.-H. Su and Y. Yun, Existence and stability fo solutions for a coupled Hadamard type sequence fractional differential system on glucose graphs, Journal of Applied Analysis and Computation, 2024, 14(2), 911–946. |
[22] | I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. |
[23] | M. D. Qassim, K. M. Furati and N.-E. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative, Abstract and Applied Analysis, 2012, Article ID 391062. http://dx.doi.org/10.1155/2012/391062. doi: 10.1155/2012/391062 |
[24] | A. A. Salamooni and D. Pawar, Existence and uniqueness of boundary value problems for Hilfer-Hadamard type fractional differential equations, Ganita, 2020, 70(2), 1–16. |
[25] | S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, 1993. |
[26] | D. R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, UK, 1974. |
[27] | B. Telli, M. S. Souid, J. Alzabut and H. Khan, Existence and uniqueness theorems for a variable-order fractional differential equation with delay, Axioms, 2023, 12(4), 339. |
[28] | U. S. Tshering, E. Thailert, S. K. Ntouyas and P. Siriwat, Sequential Hilfer-Hadamard fractional three-point boundary value problems, Thai J. Math., 2023, 21, 609–624. |
[29] | D. Vivek, K. Kanagarajan and S. Harikrishnan, Dynamics and stability of Hilfer-Hadamard type fractional differential equations with boundary conditions, J. Nonlinear Anal. Appl., 2018. http://dx.doi.org/10.5899/2018/jnaa-00386. doi: 10.5899/2018/jnaa-00386 |
[30] | H. Vu and N. V. Hoa, Hyers-Ulam stability of fractional integro-differential equation with a positive constant coefficient involving the generalized Caputo fractional derivative, Filomat, 2022, 36(18), 6299–6316. |
[31] | C. Wang and T. Z. Xu, Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives, Apll. Math., 2015, 60(4), 383–393. |
[32] | J. R. Wang, L. Lv and Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 2011, 63, 1–10. |
[33] | S. Wang, The Ulam stability of fractional differential equation with the Caputo-Fabrizio derivative, J. Function Spaces, 2022, Article ID 7268518. http://dx.doi.org/10.1155/2022/7268518. doi: 10.1155/2022/7268518 |
[34] | A. Wongcharoen, B. Ahmad, S. K. Ntouyas and J. Tariboon, Three-point boundary value problems for Langevin equation with Hilfer fractional derivative, Adv. Math. Physics, 2020, Article ID 9606428. http://dx.doi.org/10.1155/2020/9606428. doi: 10.1155/2020/9606428 |
[35] | X. Wu, F. Chen and S. Deng, Hyers-Ulam stability and existence of solutions for weighted Caputo-Fabrizio fractional differential equations, Chaos, Soliton Fractals, 2020, X 5, 100040. http://dx.doi.org/10.1016/j.csfx.2020.100040. doi: 10.1016/j.csfx.2020.100040 |
[36] | M. Zhou and L. Zhang, Initial value problem for a class of semi-linear fractional iterative differential equations, Journal of Applied Analysis and Computation, 2024, 14(5), 2733–2749. |
[37] | Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014. |