2025 Volume 15 Issue 3
Article Contents

Litao Zhang, Haochen Zhao, Guangxu Zhu, Xiaojing Zhang. THE MODIFIED DOUBLE SHIFT-SPLITTING PRECONDITIONER FOR NONSYMMETRIC GENERALIZED SADDLE POINT PROBLEMS FROM THE TIME-HARMONIC MAXWELL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1520-1535. doi: 10.11948/20240279
Citation: Litao Zhang, Haochen Zhao, Guangxu Zhu, Xiaojing Zhang. THE MODIFIED DOUBLE SHIFT-SPLITTING PRECONDITIONER FOR NONSYMMETRIC GENERALIZED SADDLE POINT PROBLEMS FROM THE TIME-HARMONIC MAXWELL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1520-1535. doi: 10.11948/20240279

THE MODIFIED DOUBLE SHIFT-SPLITTING PRECONDITIONER FOR NONSYMMETRIC GENERALIZED SADDLE POINT PROBLEMS FROM THE TIME-HARMONIC MAXWELL EQUATIONS

  • Recently, Fan, Zhu and Zheng [Computational and Applied Mathematics, 37(3), 3256-3266] proposed a generalized double shift-splitting (GDSS) preconditioner induced by a new matrix splitting method for nonsymmetric generalized saddle point problems, and gave the corresponding theoretical analysis and numerical experiments. In this paper, based on the generalized double shift-splitting (GDSS) preconditioner, we generalize the GDSS algorithms and further present the modified double shift-splitting (MDSS) preconditioner for nonsymmetric generalized saddle point problems having a nonsymmetric positive definite (1,1)-block and a positive definite (2,2)-block. Moreover, by similar theoretical analysis, we analyze the convergence conditions of the corresponding matrix splitting iteration methods and preconditioning properties of the MDSS preconditioned saddle point matrices. In final, one example is provided to confirm the effectiveness.

    MSC: 65F10, 65F15, 65F50
  • 加载中
  • [1] M. Ardeshiry, H. S. Goughery and H. N. Pour, New modified shift-splitting preconditioners for non-symmetric saddle point problems, Arab. J. Math., 2020, 9, 245–257. doi: 10.1007/s40065-019-0256-6

    CrossRef Google Scholar

    [2] M. Arioli, I. S. Duff and P. P. M. de Rijk, On the augmented system approach to sparse least-squares problems, Numer. Math., 1989, 55, 667–684. doi: 10.1007/BF01389335

    CrossRef Google Scholar

    [3] Z. -Z. Bai, Several splittings for non-Hermitian linear systems, Science in China, Series A: Math., 2008, 51,1339–1348. doi: 10.1007/s11425-008-0106-z

    CrossRef Google Scholar

    [4] Z. -Z. Bai, Optimal parameters in the HSS-like methods for saddle-point problems, Numer. Linear Algebra Appl., 2009, 16, 447–479. doi: 10.1002/nla.626

    CrossRef Google Scholar

    [5] Z. -Z. Bai, M. Benzi and F. Chen, Modified HSS iteration methods for a class of complex symmetric linear systems, Comput., 2010, 87(3–4), 93–111. doi: 10.1007/s00607-010-0077-0

    CrossRef Google Scholar

    [6] Z. -Z. Bai, G. H. Golub and C. -K. Li, Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices, Math. Comput., 2007, 76, 287–298. doi: 10.1090/S0025-5718-06-01892-8

    CrossRef Google Scholar

    [7] Z. -Z. Bai, G. H. Golub and C. -K. Li, Optimal parameter in Hermitian and skew-Hermitian splitting method for certain twoby-two block matrices, SIAM J. Sci. Comput., 2006, 28, 583–603. doi: 10.1137/050623644

    CrossRef Google Scholar

    [8] Z. -Z. Bai, G. H. Golub, L. -Z. Lu and J. -F. Yin, Block-Triangular and skew-Hermitian splitting methods for positive definite linear systems, SIAM J. Sci. Comput., 2005, 26, 844–863. doi: 10.1137/S1064827503428114

    CrossRef Google Scholar

    [9] Z. -Z. Bai, G. H. Golub and K. N. Michael, On inexact hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, Linear Algebra Appl., 2008, 428, 413–440. doi: 10.1016/j.laa.2007.02.018

    CrossRef Google Scholar

    [10] Z. -Z. Bai, G. H. Golub and M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix. Anal. A, 2003, 24, 603–626. doi: 10.1137/S0895479801395458

    CrossRef Google Scholar

    [11] Z. -Z. Bai, G. H. Golub and M. K. Ng, On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl., 2007, 14, 319–335. doi: 10.1002/nla.517

    CrossRef Google Scholar

    [12] Z. -Z. Bai, G. H. Golub and J. -Y. Pan, Preconditioned Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Semidefinite Linear Systems. Technical Report SCCM-02-12, Scientific Computing and Computational Mathematics Program, Department of Computer Science, Stanford University, Stanford, CA, 2002.

    Google Scholar

    [13] Z. -Z. Bai, G. H. Golub and J. -Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 2004, 98, 1–32. doi: 10.1007/s00211-004-0521-1

    CrossRef Google Scholar

    [14] Z. -Z. Bai and M. K. Ng, On inexact preconditioners for nonsymmetric matrices, SIAM J. Sci. Comput., 2005, 26, 1710–1724. doi: 10.1137/040604091

    CrossRef Google Scholar

    [15] Z. -Z. Bai, M. K. Ng and Z. -Q. Wang, Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix Anal. Appl., 2009, 31, 410–433. doi: 10.1137/080720243

    CrossRef Google Scholar

    [16] Z. -Z. Bai, B. N. Parlett and Z. Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 2005, 102, 1–38. doi: 10.1007/s00211-005-0643-0

    CrossRef Google Scholar

    [17] Z. -Z. Bai and Z. -Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 2008, 428, 2900–2932. doi: 10.1016/j.laa.2008.01.018

    CrossRef Google Scholar

    [18] Z. -Z. Bai and X. Yang, On HSS-based iteration methods for weakly nonlinear systems, Appl. Numer. Math., 2009, 59, 2923–2936. doi: 10.1016/j.apnum.2009.06.005

    CrossRef Google Scholar

    [19] Z. -Z. Bai, J. -F. Yin and Y. -F. Su, A shift-splitting preconditioner for non-Hermitian positive definite matrices, J. Comput. Math., 2006, 24, 539–552.

    Google Scholar

    [20] Y. Cao, A general class of shift-splitting preconditioners for non-Hermitian saddle point problems with applications to time-harmonic eddy current models, Comput. Math. Appl., 2018, 77(4), 1124–1143.

    Google Scholar

    [21] Y. Cao, J. Du and Q. Niu, Shift-splitting preconditioners for saddle point problems, J. Comput. Appl. Math., 2014, 272,239–250. doi: 10.1016/j.cam.2014.05.017

    CrossRef Google Scholar

    [22] Y. Cao, L. -Q. Yao and M. -Q. Jiang, A modified dimensional split preconditioner for generalized saddle point problems, J. Comput. Appl. Math., 2013, 250, 70–82. doi: 10.1016/j.cam.2013.02.017

    CrossRef Google Scholar

    [23] Y. Cao, L. -Q. Yao, M. -Q. Jiang and Q. Niu, A relaxed HSS preconditioner for saddle point problems from meshfree discretization, J. Comput. Math., 2013, 31, 398–421. doi: 10.4208/jcm.1304-m4209

    CrossRef Google Scholar

    [24] C. -R. Chen and C. -F. Ma, A generalized shift-splitting preconditioner for saddle point problems, Appl. Math. Lett., 2015, 43, 49–55. doi: 10.1016/j.aml.2014.12.001

    CrossRef Google Scholar

    [25] F. Chen and Y. -L. Jiang, A generalization of the inexact parameterized Uzawa methods for saddle point problems, Appl. Math. Comput., 2008, 206, 765–771.

    Google Scholar

    [26] D. S. Daniela and D. Orban, Constraint-preconditioned Krylov solvers for regularized saddle-point systems, SIAM J. Sci. Comput., 2021, 43(2), A1001–A1026. doi: 10.1137/19M1291753

    CrossRef Google Scholar

    [27] M. T. Darvishi and P. Hessari, Symmetric SOR method for augmented systems, Appl. Math. Comput., 2006, 183, 409–415.

    Google Scholar

    [28] H. Elman and G. H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal., 1994, 31,1645–1661. doi: 10.1137/0731085

    CrossRef Google Scholar

    [29] H. Elman and D. Silvester, Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations, SIAM J. Sci. Comput., 1996, 17, 33–46. doi: 10.1137/0917004

    CrossRef Google Scholar

    [30] H. T. Fan, X. Y. Zhu and B. Zheng, The generalized double shift-splitting preconditioner for nonsymmetric generalized saddle point problems from the steady Navier-Stokes equations, Comp. Appl. Math., 2018, 37(3), 3256–3266. doi: 10.1007/s40314-017-0510-5

    CrossRef Google Scholar

    [31] B. Fischer, A. Ramage, D. J. Silvester and A. J. Wathen, Minimum residual methods for augmented systems, BIT, 1998, 38, 527–543. doi: 10.1007/BF02510258

    CrossRef Google Scholar

    [32] G. H. Golub, X. Wu and J. -Y. Yuan, SOR-like methods for augmented systems, BIT, 2001, 55, 71–85.

    Google Scholar

    [33] M. -Q. Jiang and Y. Cao, On local Hermitian skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 2009, 231, 973–982. doi: 10.1016/j.cam.2009.05.012

    CrossRef Google Scholar

    [34] Y. Liang, H. Xiang and S. Zhang, Preconditioners and their analyses for edge element saddle-point systems arising from time-harmonic Maxwell's equations, Numer. Algor., 2021, 86, 281–302. doi: 10.1007/s11075-020-00889-7

    CrossRef Google Scholar

    [35] X. -F. Peng and W. Li, On unsymmetric block overrelaxation-type methods for saddle point, Appl. Math. Comput, 2008, 203(2), 660–671.

    Google Scholar

    [36] D. K. Salkuyeh, M. Masoudi and D. Hezari, On the generalized shift-splitting preconditioner for saddle point problems, Appl. Mathe. Lett., 2015, 48, 55–61. doi: 10.1016/j.aml.2015.02.026

    CrossRef Google Scholar

    [37] C. H. Santos, B. P. B. Silva and J. -Y. Yuan, Block SOR methods for rank deficient least squares problems, J. Comput. Appl. Math., 1998, 100, 1–9. doi: 10.1016/S0377-0427(98)00114-9

    CrossRef Google Scholar

    [38] C. F. Théophile and P. Vega, Frequency-explicit a posteriori error estimates for finite element discretizations of Maxwell's equations, SIAM J. Numer. Anal., 2022, 60(4), 1774–1798. doi: 10.1137/21M1421805

    CrossRef Google Scholar

    [39] H. A. Van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, UK, 2003.

    Google Scholar

    [40] L. Wang and Z. -Z. Bai, Convergence conditions for splitting iteration methods for non-Hermitian linear systems, Linear Algebra Appl., 2008, 428, 453–468. doi: 10.1016/j.laa.2007.03.001

    CrossRef Google Scholar

    [41] T. Wei and L. -T. Zhang, A new generalized shift-splitting method for nonsymmetric saddle point problems, Adv. Mech. Eng., 2022, 14(8), 1–11.

    Google Scholar

    [42] S. Wright, Stability of augmented system factorizations in interior-point methods, SIAM J. Matrix Anal. Appl., 1997, 18, 191–222. doi: 10.1137/S0895479894271093

    CrossRef Google Scholar

    [43] S. -L. Wu, T. -Z. Huang and X. -L. Zhao, A modified SSOR iterative method for augmented systems, J. Comput. Appl. Math., 2009, 228(1), 424–433. doi: 10.1016/j.cam.2008.10.006

    CrossRef Google Scholar

    [44] S. -L. Wu and D. K. Salkuyeh, A shift-splitting preconditioner for asymmetric saddle point problems, Comp. Appl. Math., 2020, 39(4), 314. doi: 10.1007/s40314-020-01364-8

    CrossRef Google Scholar

    [45] D. M. Young, Iteratin Solution for Large Systems, Academic Press, New York, 1971.

    Google Scholar

    [46] J. -Y. Yuan, Numerical methods for generalized least squares problems, J. Comput. Appl. Math., 1996, 66, 571–584. doi: 10.1016/0377-0427(95)00167-0

    CrossRef Google Scholar

    [47] J. -Y. Yuan and A. N. Iusem, Preconditioned conjugate gradient method for generalized least squares problems, J. Comput. Appl. Math., 1996, 71, 287–297. doi: 10.1016/0377-0427(95)00239-1

    CrossRef Google Scholar

    [48] G. -F. Zhang and Q. -H. Lu, On generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math., 2008, 1(15), 51–58.

    Google Scholar

    [49] L. -T. Zhang, A new preconditioner for generalized saddle matrices with highly singular(1,1) blocks, Int. J. Comput. Math., 2014, 91(9), 2091–2101. doi: 10.1080/00207160.2013.867953

    CrossRef Google Scholar

    [50] L. -T. Zhang, A parameterized shift-splitting preconditioner for saddle point problems, Math. Biosci. Eng., 2019, 16(2), 1021–1033. doi: 10.3934/mbe.2019048

    CrossRef Google Scholar

    [51] L. -T. Zhang, Convergence of Newton-relaxed non-stationary multisplitting multi-parameters methods for nonlinear equations, J. Internet Technol., 2019, 20(3), 817–826.

    Google Scholar

    [52] L. -T. Zhang, T. Huang, S. Cheng and T. Gu, The weaker convergence of non-stationary matrix multisplitting methods for almost linear systems, Taiwan. J. Math., 2011,15(4), 1423–1436.

    Google Scholar

    [53] L. -T. Zhang, T. -Z. Huang, S. -H. Cheng and Y. -P. Wang, Convergence of a generalized MSSOR method for augmented systems, J. Comput. Appl. Math., 2012,236, 1841–1850.

    Google Scholar

    [54] L. -T. Zhang, D. -D. Jiang, X. -Y. Zuo and Y. -C. Zhao, Weaker convergence of global relaxed multisplitting USAOR methods for an H-matrix, Mob. Netw. Appl., 2021, 26, 755–765.

    Google Scholar

    [55] L. -T. Zhang and L. -M. Shi, An improved generalized parameterized inexact uzawa method for singular saddle point problems, J. Comput. Anal. Appl., 2017, 23(4), 671–683.

    Google Scholar

    [56] L. -T. Zhang and Y. -F. Zhang, A modified variant of HSS preconditioner for generalized saddle point problems, Adv. Mech. Eng., 2022, 14(7), 1–15.

    Google Scholar

    [57] L. -T. Zhang, Y. -F. Zhang, X. -J. Zhang and J. -F. Zhao, A accelerated modified shift-splitting method for nonsymmetric saddle problems, J. Appl. Anal. Comput., 2023, 13(4), 2283–2296.

    Google Scholar

    [58] L. -T. Zhang, X. -J. Zhang and J. -F. Zhao, A parameter shift-splitting iterative method for complex symmetric linear systems, J. Appl. Anal. Comput., 2024, 14(5), 2877–2889.

    Google Scholar

    [59] L. -T. Zhang, Y. -C. Zhao, Y. -F. Zhang and H. -K. Li, Relaxed modulus-based synchronous multisplitting multi-parameter methods for linear complementarity problems, J. Appl. Anal. Comput., 2021, 26, 745–754.

    Google Scholar

    [60] B. Zheng, Z. -Z. Bai and X. Yang, On semi-convergence of parameterized Uzawa methods for singular saddle point problems, Linear Algebra Appl., 2009, 431, 808–817.

    Google Scholar

    [61] S. -W. Zhou, A. -L. Yang, Y. Dou and Y. -J. Wu, The modified shift-splitting preconditioners for nonsymmetric saddle-point problems, Appl. Math. Lett., 2016, 59, 109–114.

    Google Scholar

Figures(7)  /  Tables(4)

Article Metrics

Article views(312) PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint