2025 Volume 15 Issue 3
Article Contents

Aytura Keram, Pengzhan Huang. CONVERGENCE ANALYSIS OF THE UZAWA ITERATIVE METHOD FOR THE THERMALLY COUPLED STATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS FLOW[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1563-1579. doi: 10.11948/20240292
Citation: Aytura Keram, Pengzhan Huang. CONVERGENCE ANALYSIS OF THE UZAWA ITERATIVE METHOD FOR THE THERMALLY COUPLED STATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS FLOW[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1563-1579. doi: 10.11948/20240292

CONVERGENCE ANALYSIS OF THE UZAWA ITERATIVE METHOD FOR THE THERMALLY COUPLED STATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS FLOW

  • Author Bio: Email: ayturakeram@sina.com(A. Keram)
  • Corresponding author: Email: hpzh@xju.edu.cn(P. Huang)
  • Fund Project: This work is supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (grant number 2023D14014) and Tianshan Talent Training Program of Xinjiang Uygur Autonomous Region (grant number 2023TSYCCX0103)
  • In this paper, we designed an Uzawa iterative method for solving the thermally coupled stationary incompressible magnetohydrodynamics system, where a decoupled discrete system is obtained and no saddle point problem is required to deal with at each iterative step except the initial guess. Then, the convergence analysis of the presented method is provided. Finally, the effectiveness of the proposed method is illustrated with some numerical examples.

    MSC: 65N30, 65N12
  • 加载中
  • [1] D. N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations, Calcolo, 1984, 21, 337–344. doi: 10.1007/BF02576171

    CrossRef Google Scholar

    [2] K. Arrow, L. Hurwicz and H. Uzawa, Studies in Nonlinear Programming, Standford University Press, Standford, 1958.

    Google Scholar

    [3] S. Badia, A. F. Martína and R. Planas, Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem, J. Comput. Phys., 2014, 274, 562–591. doi: 10.1016/j.jcp.2014.06.028

    CrossRef Google Scholar

    [4] A. Bermúdez, R. Muñoz-Sola and R. Vázquez, Analysis of two stationary magnetohydrodynamics systems of equations including Joule heating, J. Math. Anal. Appl., 2010, 368, 444–468. doi: 10.1016/j.jmaa.2010.03.046

    CrossRef Google Scholar

    [5] J. Boland and W. Layton, Error analysis for finite element methods for steady natural convection problems, Numer. Funct. Anal. Optimiz., 1990, 11, 449–483. doi: 10.1080/01630569008816383

    CrossRef Google Scholar

    [6] P. Chen, J. Huang and H. Sheng, Some Uzawa methods for steady incompressible Navier-Stokes equations discretized by mixed element methods, J. Comput. Appl. Math., 2015, 273, 313–325. doi: 10.1016/j.cam.2014.06.019

    CrossRef Google Scholar

    [7] A. Çıbık and W. Layton, Convergence of a Ramshaw-Mesina iteration, Appl. Math. Lett., 2024, 154, 109107. doi: 10.1016/j.aml.2024.109107

    CrossRef Google Scholar

    [8] R. Codina and N. Hernández, Approximation of the thermally coupled MHD problem using a stabilized finite element method, J. Comput. Phys., 2011, 230, 1281–1303. doi: 10.1016/j.jcp.2010.11.003

    CrossRef Google Scholar

    [9] Q. Q. Ding, X. N. Long and S. P. Mao, Convergence analysis of Crank-Nicolson extrapolated fully discrete scheme for thermally coupled incompressible magnetohydrodynamic system, Appl. Numer. Math., 2020, 157, 522–543. doi: 10.1016/j.apnum.2020.06.018

    CrossRef Google Scholar

    [10] X. J. Dong, Y. N. He and Y. Zhang, Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics, Comput. Methods Appl. Mech. Engrg., 2014, 276, 287–311. doi: 10.1016/j.cma.2014.03.022

    CrossRef Google Scholar

    [11] J. F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2006.

    Google Scholar

    [12] V. Girault and P. A. Raviart, Finite Element Method for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, New York, 1986.

    Google Scholar

    [13] M. D. Gunzburger, A. J. Meir and J. S. Peterson, On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics, Math. Comp., 1991, 56, 523–563. doi: 10.1090/S0025-5718-1991-1066834-0

    CrossRef Google Scholar

    [14] Y. N. He, Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations, IMA J. Numer. Anal., 2015, 35, 767–801. doi: 10.1093/imanum/dru015

    CrossRef Google Scholar

    [15] Q. G. Hong, J. Kraus, M. Lymbery and F. Philo, Parameter-robust Uzawa-type iterative methods for double saddle point problems arising in Biot's consolidation and multiple-network poroelasticity models, Math. Mod. Meth. Appl. Sci., 2020, 30, 2523–2555. doi: 10.1142/S0218202520500499

    CrossRef Google Scholar

    [16] A. Keram and P. Z. Huang, An iterative method for the thermally coupled incompressible magnetohydrodynamics equations at high parameter, Mathematical Methods in the Applied Sciences, 2024. DOI: 10.1002/mma.9420.

    CrossRef Google Scholar

    [17] S. J. Liu and P. Z. Huang, A grad-div stabilized method using the Jacobi iteration for the thermally coupled incompressible magnetohydrodynamic system, Z. Angew. Math. Mech., 2023, 103, e202200362. doi: 10.1002/zamm.202200362

    CrossRef Google Scholar

    [18] H. Ma and P. Huang, A fully discrete decoupled finite element method for the thermally coupled incompressible magnetohydrodynamic problem, J. Sci. Comput., 2023, 95, 14. doi: 10.1007/s10915-023-02131-7

    CrossRef Google Scholar

    [19] A. J. Meir, Thermally coupled magnetohydynamics flow, Appl. Math. Comput., 1994, 65, 79–94.

    Google Scholar

    [20] A. J. Meir, Thermally coupled, stationary, incompressible MHD flow; Existence uniqueness, and finite element approximation, Numer. Meth. Part. Differ. Equs., 1995, 11, 311–337. doi: 10.1002/num.1690110403

    CrossRef Google Scholar

    [21] A. J. Meir and P. G. Schmidt, On electronmagnetically and thermally driven liquid-metal flows, Nonliear Anal., 2001, 47, 3281–3294. doi: 10.1016/S0362-546X(01)00445-X

    CrossRef Google Scholar

    [22] R. H. Nochetto and J. H. Pyo, Optimal relaxation parameter for the Uzawa method, Numer. Math., 2004, 98, 695–702. doi: 10.1007/s00211-004-0522-0

    CrossRef Google Scholar

    [23] H. Ouertani and M. Abdelwahed, The algorithmic resolution of spectral-element discretization for the time-dependent Stokes problem, Bound. Value. Probl., 2024, 89.

    Google Scholar

    [24] H. L. Qiu, Error analysis of Euler semi-implicit scheme for the nonstationary magnetohydrodynamics problem with temperature dependent parameters, J. Sci. Comput., 2020, 85, 1–26. doi: 10.1007/s10915-020-01306-w

    CrossRef Google Scholar

    [25] S. S. Ravindran, A decoupled Crank-Nicolson time-stepping scheme for thermaly coupled magneto-hydrodynamic system, Inter. J. Optimiz. Control Theories Appl., 2018, 8, 2146–5703.

    Google Scholar

    [26] S. S. Ravindran, Partitioned time-stepping scheme for an MHD system with temperature-dependent coefficients, IMA J. Numer. Anal., 2019, 39, 1860–1887. doi: 10.1093/imanum/dry037

    CrossRef Google Scholar

    [27] M. Sheikholeslami, Influence of magnetic field on nanofluid free convection in an open porous cavity by means of lattice Boltzmann method, J. Mol. Liq., 2017, 234, 364–374. doi: 10.1016/j.molliq.2017.03.104

    CrossRef Google Scholar

    [28] J. T. Yang and T. Zhang, Stability and convergence of iterative finite element methods for the thermally coupled incompressible MHD flow, Int. J. Numer. Methods Heat fluid flow., 2020, 30, 5103–5141. doi: 10.1108/HFF-11-2019-0821

    CrossRef Google Scholar

    [29] X. W. Yang, P. Z. Huang and Y. N. He, A Voigt regularization of the thermally coupled magnetohydrodynamic flow, Z. Angew. Math. Phys., 2024, 75, 115. doi: 10.1007/s00033-024-02248-1

    CrossRef Google Scholar

    [30] H. F. Zhang and T. Zhang, Optimal error estimates of two-level iterative finite element methods for the thermally coupled incompressible MHD with different viscosities, Mathematical Methods in the Applied Sciences, 2024. DOI: 10.1002/mma.8800.

    CrossRef Google Scholar

    [31] T. L. Zhu, H. Y. Su and X. L. Feng, Some Uzawa-type finite element iterative methods for the steady incompressible magnetohydrodynamic equations, Appl. Math. Comput., 2017, 302, 34–47.

    Google Scholar

Figures(3)  /  Tables(2)

Article Metrics

Article views(364) PDF downloads(132) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint