Citation: | Weihua Lin. SHARP CONDITIONS OF A NEW MATRIX SPLITTING ITERATION METHOD FOR GENERALIZED ABSOLUTE VALUE EQUATION[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 328-346. doi: 10.11948/20240308 |
For the generalized absolute value equation (denoted by GAVE), we develop a new matrix splitting iteration method, which is derived by reformulating equivalently GAVE as a three-by-three block non-linear equation. Convergence of the new proposal is obtained under certain assumptions imposed on the involved iteration parameters and splitting matrix. Moreover, sharp conditions of the iteration parameters are presented via the new analysis strategy and numerical experiments also confirm the achieved theoretical results. Compared with some well-known methods, the test results show the feasibility, robustness and effectiveness of the new matrix splitting iteration method with application to the linear complementarity problem.
[1] | Z. Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl., 2010, 17, 917-933. doi: 10.1002/nla.680 |
[2] | J. Y. Bello Cruz, O. P. Ferreira and L. F. Prudente, On the global convergence of the inexact semi-smooth Newton method for absolute value equatio, Comput. Optim. Appl., 2016, 65, 93-108. doi: 10.1007/s10589-016-9837-x |
[3] | A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979. |
[4] | L. Caccetta, B. Qu and G. Zhou, A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl., 2011, 48, 45-58. doi: 10.1007/s10589-009-9242-9 |
[5] | C. Chen, Y. Yang, D. Yu and D. Han, An inverse-free dynamical system for solving the absolute value equations, Appl. Numer. Math., 2021, 168, 170-181. doi: 10.1016/j.apnum.2021.06.002 |
[6] |
T. Davis, University of Florida Sparse Matrix Collection, University of Florida, Gainesville, FL. |
[7] | X. Dong, X. Shao and H. Shen, A new SOR-like method for solving absolute value equations, Appl. Numer. Math., 2020, 156, 410-421. doi: 10.1016/j.apnum.2020.05.013 |
[8] | V. Edalatpour, D. Hezari and D. Khojasteh Salkuyeh, A generalization of the Gauss-Seidel iteration method for solving absolute value equations, Appl. Math. Comput., 2017, 293, 156-167. |
[9] | P. Guo, S. Wu and C. Li, On the SOR-like iteration method for solving absolute value equations, Appl. Math. Lett., 2019, 97, 107-113. doi: 10.1016/j.aml.2019.03.033 |
[10] | A. Hadjidimos, Accelerated overrelaxation method, Math. Comput., 1978, 32, 19-157. |
[11] | B. Hashemi, Sufficient conditions for the solvability of a Sylvester-like absolute value matrix equation, Appl. Math. Lett., 2021, 112, 106818. doi: 10.1016/j.aml.2020.106818 |
[12] | M. Hladík, Bounds for the solutions of absolute value equations, Comput. Optim. Appl., 2018, 69, 243-266. doi: 10.1007/s10589-017-9939-0 |
[13] | M. Hladík, Properties of the solution set of absolute value equations and the related matrix classes, SIAM J. Matrix Anal. Appl., 2023, 44(1), 75-195. |
[14] | S. Hu and Z. Huang, A note on absolute value equations, Optim. Lett., 2010, 4, 417-424. doi: 10.1007/s11590-009-0169-y |
[15] | S. Hu, Z. Huang and Q. Zhang, A generalized Newton method for absolute value equations associated with second order cones, J. Comput. Appl. Math., 2011, 235, 1490-1501. doi: 10.1016/j.cam.2010.08.036 |
[16] | B. Huang and W. Li, A modified SOR-like method for absolute value equations associated with second order cones, J. Comput. Appl. Math., 2022, 400, 113745. doi: 10.1016/j.cam.2021.113745 |
[17] | Z. Jiang and J. Li, Solving tensor absolute value equation, Appl. Numer. Math., 2021, 170, 255-268. doi: 10.1016/j.apnum.2021.07.020 |
[18] | Y. Ke, The new iteration algorithm for absolute value equation, Appl. Math. Lett., 2020, 99, 105990. doi: 10.1016/j.aml.2019.07.021 |
[19] | Y. Ke and C. Ma, SOR-like iteration method for solving absolute value equations, Appl. Math. Comput., 2017, 311, 195-202. |
[20] | C. Li, A modified generalized Newton method for absolute value equations, J. Optim. Theory Appl., 2016, 170, 1055-1059. doi: 10.1007/s10957-016-0956-4 |
[21] | O. L. Mangasarian, Absolute value programming, Comput. Optim. Appl., 2007, 36, 43-53. doi: 10.1007/s10589-006-0395-5 |
[22] | O. L. Mangasarian, Absolute value equation solution via concave minimization, Optim. Lett., 2007, 1, 3-8. |
[23] | O. L. Mangasarian, A hybrid algorithm for solving the absolute value equation, Optim. Lett., 2015, 9, 1469-1474. |
[24] | F. Mezzadri, On the solution of general absolute value equations, Appl. Math. Lett., 2020, 107, 106462. |
[25] | X. Miao, J. Yang and S. Hu, A generalized Newton method for absolute value equations associated with circular cones, Appl. Math. Comput., 2015, 269, 155-168. |
[26] | H. Moosaei, S. Ketabchi, M. A. Noor, J. Iqbal and V. Hooshyarbakhsh, Some techniques for solving absolute value equations, Appl. Math. Comput., 2015, 268, 696-705. |
[27] | K. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann, Berlin, 1988. |
[28] | M. A. Noor, J. Iqbal, K. I. Noor and E. Al-Said, On an iterative method for solving absolute value equations, Optim. Lett., 2012, 6, 1027-1033. |
[29] | O. Prokopyev, On equivalent reformulations for absolute value equations, Comput. Optim. Appl., 2009, 44, 363-372. |
[30] | J. Rohn, Systems of linear interval equations, Linear Algebra Appl., 1989, 126, 39-78. |
[31] | J. Rohn, A theorem of the alternatives for the equation $Ax + B|x| = b $, Linear Multilinear A., 2004, 52, 421-426. |
[32] | J. Rohn, On unique solvability of the absolute value equation, Optim. Lett., 2009, 3, 603-606. |
[33] | J. Rohn, An algorithm for solving the absolute value equations, Electron. J. Linear Algebra., 2009, 18, 589-599. |
[34] | J. Rohn, V. Hooshyarbakhsh and R. Farhadsefat, An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optim. Lett., 2014, 8, 35-44. |
[35] | D. K. Salkuyeh, The Picard-HSS iteration method for absolute value equations, Optim. Lett., 2014, 8, 2191-2202. |
[36] | S. Shahsavari and S. Ketabchi, The proximal methods for solving absolute value equation, Numer. Algebr. Control., 2021, 11(3), 449-460. |
[37] | S. Wu and C. Li, A note on unique solvability of the absolute value equation, Optim. Lett., 2020, 14, 1957-1960. |
[38] | S. Wu and S. Shen, On the unique solution of the generalized absolute value equation, Optim. Lett., 2021, 15, 2017-2024. |
[39] | D. Yu, C. Chen and D. Han, A modified fixed point iteration method for solving the system of absolute value equations, Optimization, 2022, 71, 449-461. |
[40] | M. Zamani and M. Hladík, A new concave minimization algorithm for the absolute value equation solution, Optim. Lett., 2021, 15(6), 2241-2254. |
The domains of the parameters
Curves of RES for Example 3.1 with