2026 Volume 16 Issue 1
Article Contents

Weihua Lin. SHARP CONDITIONS OF A NEW MATRIX SPLITTING ITERATION METHOD FOR GENERALIZED ABSOLUTE VALUE EQUATION[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 328-346. doi: 10.11948/20240308
Citation: Weihua Lin. SHARP CONDITIONS OF A NEW MATRIX SPLITTING ITERATION METHOD FOR GENERALIZED ABSOLUTE VALUE EQUATION[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 328-346. doi: 10.11948/20240308

SHARP CONDITIONS OF A NEW MATRIX SPLITTING ITERATION METHOD FOR GENERALIZED ABSOLUTE VALUE EQUATION

  • For the generalized absolute value equation (denoted by GAVE), we develop a new matrix splitting iteration method, which is derived by reformulating equivalently GAVE as a three-by-three block non-linear equation. Convergence of the new proposal is obtained under certain assumptions imposed on the involved iteration parameters and splitting matrix. Moreover, sharp conditions of the iteration parameters are presented via the new analysis strategy and numerical experiments also confirm the achieved theoretical results. Compared with some well-known methods, the test results show the feasibility, robustness and effectiveness of the new matrix splitting iteration method with application to the linear complementarity problem.

    MSC: 65F10, 65H10
  • 加载中
  • [1] Z. Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl., 2010, 17, 917-933. doi: 10.1002/nla.680

    CrossRef Google Scholar

    [2] J. Y. Bello Cruz, O. P. Ferreira and L. F. Prudente, On the global convergence of the inexact semi-smooth Newton method for absolute value equatio, Comput. Optim. Appl., 2016, 65, 93-108. doi: 10.1007/s10589-016-9837-x

    CrossRef Google Scholar

    [3] A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.

    Google Scholar

    [4] L. Caccetta, B. Qu and G. Zhou, A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl., 2011, 48, 45-58. doi: 10.1007/s10589-009-9242-9

    CrossRef Google Scholar

    [5] C. Chen, Y. Yang, D. Yu and D. Han, An inverse-free dynamical system for solving the absolute value equations, Appl. Numer. Math., 2021, 168, 170-181. doi: 10.1016/j.apnum.2021.06.002

    CrossRef Google Scholar

    [6] T. Davis, University of Florida Sparse Matrix Collection, University of Florida, Gainesville, FL. http://www.cise.ufl.edu/research/sparse/matrices/.

    Google Scholar

    [7] X. Dong, X. Shao and H. Shen, A new SOR-like method for solving absolute value equations, Appl. Numer. Math., 2020, 156, 410-421. doi: 10.1016/j.apnum.2020.05.013

    CrossRef Google Scholar

    [8] V. Edalatpour, D. Hezari and D. Khojasteh Salkuyeh, A generalization of the Gauss-Seidel iteration method for solving absolute value equations, Appl. Math. Comput., 2017, 293, 156-167.

    Google Scholar

    [9] P. Guo, S. Wu and C. Li, On the SOR-like iteration method for solving absolute value equations, Appl. Math. Lett., 2019, 97, 107-113. doi: 10.1016/j.aml.2019.03.033

    CrossRef Google Scholar

    [10] A. Hadjidimos, Accelerated overrelaxation method, Math. Comput., 1978, 32, 19-157.

    Google Scholar

    [11] B. Hashemi, Sufficient conditions for the solvability of a Sylvester-like absolute value matrix equation, Appl. Math. Lett., 2021, 112, 106818. doi: 10.1016/j.aml.2020.106818

    CrossRef Google Scholar

    [12] M. Hladík, Bounds for the solutions of absolute value equations, Comput. Optim. Appl., 2018, 69, 243-266. doi: 10.1007/s10589-017-9939-0

    CrossRef Google Scholar

    [13] M. Hladík, Properties of the solution set of absolute value equations and the related matrix classes, SIAM J. Matrix Anal. Appl., 2023, 44(1), 75-195.

    Google Scholar

    [14] S. Hu and Z. Huang, A note on absolute value equations, Optim. Lett., 2010, 4, 417-424. doi: 10.1007/s11590-009-0169-y

    CrossRef Google Scholar

    [15] S. Hu, Z. Huang and Q. Zhang, A generalized Newton method for absolute value equations associated with second order cones, J. Comput. Appl. Math., 2011, 235, 1490-1501. doi: 10.1016/j.cam.2010.08.036

    CrossRef Google Scholar

    [16] B. Huang and W. Li, A modified SOR-like method for absolute value equations associated with second order cones, J. Comput. Appl. Math., 2022, 400, 113745. doi: 10.1016/j.cam.2021.113745

    CrossRef Google Scholar

    [17] Z. Jiang and J. Li, Solving tensor absolute value equation, Appl. Numer. Math., 2021, 170, 255-268. doi: 10.1016/j.apnum.2021.07.020

    CrossRef Google Scholar

    [18] Y. Ke, The new iteration algorithm for absolute value equation, Appl. Math. Lett., 2020, 99, 105990. doi: 10.1016/j.aml.2019.07.021

    CrossRef Google Scholar

    [19] Y. Ke and C. Ma, SOR-like iteration method for solving absolute value equations, Appl. Math. Comput., 2017, 311, 195-202.

    Google Scholar

    [20] C. Li, A modified generalized Newton method for absolute value equations, J. Optim. Theory Appl., 2016, 170, 1055-1059. doi: 10.1007/s10957-016-0956-4

    CrossRef Google Scholar

    [21] O. L. Mangasarian, Absolute value programming, Comput. Optim. Appl., 2007, 36, 43-53. doi: 10.1007/s10589-006-0395-5

    CrossRef Google Scholar

    [22] O. L. Mangasarian, Absolute value equation solution via concave minimization, Optim. Lett., 2007, 1, 3-8.

    Google Scholar

    [23] O. L. Mangasarian, A hybrid algorithm for solving the absolute value equation, Optim. Lett., 2015, 9, 1469-1474.

    Google Scholar

    [24] F. Mezzadri, On the solution of general absolute value equations, Appl. Math. Lett., 2020, 107, 106462.

    Google Scholar

    [25] X. Miao, J. Yang and S. Hu, A generalized Newton method for absolute value equations associated with circular cones, Appl. Math. Comput., 2015, 269, 155-168.

    Google Scholar

    [26] H. Moosaei, S. Ketabchi, M. A. Noor, J. Iqbal and V. Hooshyarbakhsh, Some techniques for solving absolute value equations, Appl. Math. Comput., 2015, 268, 696-705.

    Google Scholar

    [27] K. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann, Berlin, 1988.

    Google Scholar

    [28] M. A. Noor, J. Iqbal, K. I. Noor and E. Al-Said, On an iterative method for solving absolute value equations, Optim. Lett., 2012, 6, 1027-1033.

    Google Scholar

    [29] O. Prokopyev, On equivalent reformulations for absolute value equations, Comput. Optim. Appl., 2009, 44, 363-372.

    Google Scholar

    [30] J. Rohn, Systems of linear interval equations, Linear Algebra Appl., 1989, 126, 39-78.

    Google Scholar

    [31] J. Rohn, A theorem of the alternatives for the equation $Ax + B|x| = b $, Linear Multilinear A., 2004, 52, 421-426.

    $ Ax + B|x| = b$" target="_blank">Google Scholar

    [32] J. Rohn, On unique solvability of the absolute value equation, Optim. Lett., 2009, 3, 603-606.

    Google Scholar

    [33] J. Rohn, An algorithm for solving the absolute value equations, Electron. J. Linear Algebra., 2009, 18, 589-599.

    Google Scholar

    [34] J. Rohn, V. Hooshyarbakhsh and R. Farhadsefat, An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optim. Lett., 2014, 8, 35-44.

    Google Scholar

    [35] D. K. Salkuyeh, The Picard-HSS iteration method for absolute value equations, Optim. Lett., 2014, 8, 2191-2202.

    Google Scholar

    [36] S. Shahsavari and S. Ketabchi, The proximal methods for solving absolute value equation, Numer. Algebr. Control., 2021, 11(3), 449-460.

    Google Scholar

    [37] S. Wu and C. Li, A note on unique solvability of the absolute value equation, Optim. Lett., 2020, 14, 1957-1960.

    Google Scholar

    [38] S. Wu and S. Shen, On the unique solution of the generalized absolute value equation, Optim. Lett., 2021, 15, 2017-2024.

    Google Scholar

    [39] D. Yu, C. Chen and D. Han, A modified fixed point iteration method for solving the system of absolute value equations, Optimization, 2022, 71, 449-461.

    Google Scholar

    [40] M. Zamani and M. Hladík, A new concave minimization algorithm for the absolute value equation solution, Optim. Lett., 2021, 15(6), 2241-2254.

    Google Scholar

Figures(2)  /  Tables(4)

Article Metrics

Article views(51) PDF downloads(16) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint