Citation: | Fang Wang, Xiufang Feng, Shangqin He, Panpan Wang. LIE SYMMETRY ANALYSIS AND CONSERVATION LAWS FOR (2+1)-DIMENSIONAL COUPLED TIME-FRACTIONAL NONLINEAR SCHRÖDINGER EQUATIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1601-1615. doi: 10.11948/20240318 |
Lie symmetry analysis is used to solve coupled time-fractional nonlinear Schrödinger equations. Having established the Lie point symmetries of the original equations, they are reduced to nonlinear fractional ordinary differential equations. Exact solutions are found and then subjected to in-depth convergence analysis. Also, conservation laws for the coupled time-fractional nonlinear Schrödinger equations are derived systematically by leveraging the powerful Ibragimov method.
[1] | J. Ahmad and Z. Mustafa, Analysis of soliton solutions with different wave configurations to the fractional coupled nonlinear Schrödinger equations and applications, Optical and Quantum Electronics, 2023, 55(14), p. 1228. doi: 10.1007/s11082-023-05534-w |
[2] | G. Akram, S. Arshed and M. Sadaf, Soliton solutions of generalized time–fractional Boussinesq–like equation via three techniques, Chaos, Solitons & Fractals, 2023, 173, p. 113653. |
[3] |
G. Akram, S. Arshed, M. Sadaf and A. Khan, Extraction of new soliton solutions of (3+1)–dimensional nonlinear extended quantum Zakharov–Kuznetsov equation via generalized exponential rational function method and $ \left(\frac{G'}{G}, \frac{1}{G} \right) $ expansion method, Optical and Quantum Electronics, 2024, 56(5), 829–840. doi: 10.1007/s11082-024-06662-7
CrossRef $ \left(\frac{G'}{G}, \frac{1}{G} \right) $ expansion method" target="_blank">Google Scholar |
[4] | G. Akram, M. Sadaf, S. Arshed, et al., Formation of solitons for the modified nonlinear Schrödinger equation, Modern Physics Letters B, 2024, 38(22), p. 2450189. doi: 10.1142/S0217984924501896 |
[5] | G. Akram, M. Sadaf and I. Zainab, Effect of a new local derivative on space–time fractional nonlinear Schrödinger equation and its stability analysis, Optical and Quantum Electronics, 2023, 55(9), 834–851. doi: 10.1007/s11082-023-05009-y |
[6] | S. Arshed, G. Akram, M. Sadaf and M. M. Yasin, Extraction of new exact solutions of the resonant fractional nonlinear Schrödinger equation via two integrating techniques, Optical and Quantum Electronics, 2022, 54(12), 799–812. doi: 10.1007/s11082-022-04121-9 |
[7] | S. Arshed, G. Akram, M. Sadaf, et al., Optical soliton solutions of perturbed nonlinear Schrödinger equation with parabolic law nonlinearity, Optical and Quantum Electronics, 2024, 56(1), 50–68. doi: 10.1007/s11082-023-05564-4 |
[8] | E. Buckwar and Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, Journal of Mathematical Analysis and Applications, 1998, 227(1), 81–97. doi: 10.1006/jmaa.1998.6078 |
[9] | X. Cheng, J. Hou and L. Wang, Lie symmetry analysis, invariant subspace method and q–homotopy analysis method for solving fractional system of single–walled carbon nanotube, Computational and Applied Mathematics, 2021, 40, 1–17. doi: 10.1007/s40314-020-01383-5 |
[10] | M. Eslami, Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations, Applied Mathematics and Computation, 2016, 285, 141–148. doi: 10.1016/j.amc.2016.03.032 |
[11] | M. Eslami, B. Fathi Vajargah, M. Mirzazadeh and A. Biswas, Application of first integral method to fractional partial differential equations, Indian Journal of Physics, 2014, 88(2), 177–184. doi: 10.1007/s12648-013-0401-6 |
[12] | X. Gao, Auto–Bäcklund transformation with the solitons and similarity reductions for a generalized nonlinear shallow water wave equation, Qualitative Theory of Dynamical Systems, 2024, 23(4), p. 181. doi: 10.1007/s12346-024-01034-8 |
[13] | X. Gao, Two–layer–liquid and lattice considerations through a (3+1)–dimensional generalized Yu–Toda–Sasa–Fukuyama system, Applied Mathematics Letters, 2024, 152, p. 109018. doi: 10.1016/j.aml.2024.109018 |
[14] | R. Gazizov, A. Kasatkin and S. Y. Lukashchuk, Symmetry properties of fractional diffusion equations, Physica Scripta, 2009, 2009(T136), 014016–014020. |
[15] | M. S. Hashemi, A. Haji-Badali, F. Alizadeh, et al., Nonclassical Lie symmetry and conservation laws of the nonlinear time–fractional Korteweg–de Vries equation, Communications in Theoretical Physics, 2021, 73(9), 095006–095014. doi: 10.1088/1572-9494/ac09df |
[16] | N. H. Ibragimov, A new conservation theorem, Journal of Mathematical Analysis and Applications, 2007, 333(1), 311–328. doi: 10.1016/j.jmaa.2006.10.078 |
[17] | J. Jia, X. Jiang and H. Zhang, An L1 Legendre–Galerkin spectral method with fast algorithm for the two-dimensional nonlinear coupled time fractional Schrödinger equation and its parameter estimation, Computers & Mathematics with Applications, 2021, 82, 13–35. |
[18] | J. Liu, X. Yang, L. Geng and X. Yu, On fractional symmetry group scheme to the higher–dimensional space and time fractional dissipative Burgers equation, International Journal of Geometric Methods in Modern Physics, 2022, 19(11), 2250173–2250186. doi: 10.1142/S0219887822501730 |
[19] | W. Liu and Y. Zhang, Time–fractional Drinfeld–Sokolov–Wilson system: Lie symmetry analysis, analytical solutions and conservation laws, The European Physical Journal Plus, 2019, 134(3), 126–135. doi: 10.1140/epjp/i2019-12490-8 |
[20] | I. Naeem and M. D. Khan, Symmetry classification of time–fractional diffusion equation, Communications in Nonlinear Science and Numerical Simulation, 2017, 42, 560–570. doi: 10.1016/j.cnsns.2016.05.022 |
[21] | P. J. Olver, Applications of Lie Groups to Differential Equations, 107, Springer Science & Business Media, 1993. |
[22] | I. Onder, A. Secer and M. Bayram, Optical soliton solutions of time–fractional coupled nonlinear Schrödinger system via Kudryashov–based methods, Optik, 2023, 272, p. 170362. doi: 10.1016/j.ijleo.2022.170362 |
[23] | M. Sadaf, S. Arshed, G. Akram, et al., Solitary wave solutions of Camassa–Holm nonlinear Schrödinger and (3+1)–dimensional Boussinesq equations, Optical and Quantum Electronics, 2024, 56(5), 720–740. doi: 10.1007/s11082-024-06379-7 |
[24] | Y. Shi, J. Zhang, J. Zhao and S. Zhao, Abundant analytic solutions of the stochastic KdV equation with time–dependent additive white Gaussian noise via Darboux transformation method, Nonlinear Dynamics, 2023, 111(3), 2651–2661. doi: 10.1007/s11071-022-07968-5 |
[25] | H. Tariq, M. Sadaf, G. Akram, et al., Computational study for the conformable nonlinear Schrödinger equation with cubic–quintic–septic nonlinearities, Results in Physics, 2021, 30, p. 104839. doi: 10.1016/j.rinp.2021.104839 |
[26] | J. Yu and Y. Feng, On the generalized time fractional reaction–diffusion equation: Lie symmetries, exact solutions and conservation laws, Chaos, Solitons & Fractals, 2024, 182, 114855–114860. |
[27] | Z. Zhang and G. Li, Lie symmetry analysis and exact solutions of the time–fractional biological population model, Physica A: Statistical Mechanics and its Applications, 2020, 540, 123134–123144. doi: 10.1016/j.physa.2019.123134 |