2025 Volume 15 Issue 3
Article Contents

Fang Wang, Xiufang Feng, Shangqin He, Panpan Wang. LIE SYMMETRY ANALYSIS AND CONSERVATION LAWS FOR (2+1)-DIMENSIONAL COUPLED TIME-FRACTIONAL NONLINEAR SCHRÖDINGER EQUATIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1601-1615. doi: 10.11948/20240318
Citation: Fang Wang, Xiufang Feng, Shangqin He, Panpan Wang. LIE SYMMETRY ANALYSIS AND CONSERVATION LAWS FOR (2+1)-DIMENSIONAL COUPLED TIME-FRACTIONAL NONLINEAR SCHRÖDINGER EQUATIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1601-1615. doi: 10.11948/20240318

LIE SYMMETRY ANALYSIS AND CONSERVATION LAWS FOR (2+1)-DIMENSIONAL COUPLED TIME-FRACTIONAL NONLINEAR SCHRÖDINGER EQUATIONS

  • Author Bio: Email: 12021140036@stu.nxu.edu.cn(F. Wang); Email: 12022140038@stu.nxu.edu.cn(P. Wang)
  • Corresponding authors: Email: xf_feng@nxu.edu.cn(X. Feng);  Email: hsq101@163.com(S. He) 
  • Fund Project: This work were supported by the National Science Foundation of Ningxia Province (Grant No. 2023AAC03257), Scientific research project of Ningxia Education Department (Grant No. NYG2022062) and the National Natural Science Foundation of China (Grant No. 11961054)
  • Lie symmetry analysis is used to solve coupled time-fractional nonlinear Schrödinger equations. Having established the Lie point symmetries of the original equations, they are reduced to nonlinear fractional ordinary differential equations. Exact solutions are found and then subjected to in-depth convergence analysis. Also, conservation laws for the coupled time-fractional nonlinear Schrödinger equations are derived systematically by leveraging the powerful Ibragimov method.

    MSC: 34K37, 35Q55
  • 加载中
  • [1] J. Ahmad and Z. Mustafa, Analysis of soliton solutions with different wave configurations to the fractional coupled nonlinear Schrödinger equations and applications, Optical and Quantum Electronics, 2023, 55(14), p. 1228. doi: 10.1007/s11082-023-05534-w

    CrossRef Google Scholar

    [2] G. Akram, S. Arshed and M. Sadaf, Soliton solutions of generalized time–fractional Boussinesq–like equation via three techniques, Chaos, Solitons & Fractals, 2023, 173, p. 113653.

    Google Scholar

    [3] G. Akram, S. Arshed, M. Sadaf and A. Khan, Extraction of new soliton solutions of (3+1)–dimensional nonlinear extended quantum Zakharov–Kuznetsov equation via generalized exponential rational function method and $ \left(\frac{G'}{G}, \frac{1}{G} \right) $ expansion method, Optical and Quantum Electronics, 2024, 56(5), 829–840. doi: 10.1007/s11082-024-06662-7

    CrossRef $ \left(\frac{G'}{G}, \frac{1}{G} \right) $ expansion method" target="_blank">Google Scholar

    [4] G. Akram, M. Sadaf, S. Arshed, et al., Formation of solitons for the modified nonlinear Schrödinger equation, Modern Physics Letters B, 2024, 38(22), p. 2450189. doi: 10.1142/S0217984924501896

    CrossRef Google Scholar

    [5] G. Akram, M. Sadaf and I. Zainab, Effect of a new local derivative on space–time fractional nonlinear Schrödinger equation and its stability analysis, Optical and Quantum Electronics, 2023, 55(9), 834–851. doi: 10.1007/s11082-023-05009-y

    CrossRef Google Scholar

    [6] S. Arshed, G. Akram, M. Sadaf and M. M. Yasin, Extraction of new exact solutions of the resonant fractional nonlinear Schrödinger equation via two integrating techniques, Optical and Quantum Electronics, 2022, 54(12), 799–812. doi: 10.1007/s11082-022-04121-9

    CrossRef Google Scholar

    [7] S. Arshed, G. Akram, M. Sadaf, et al., Optical soliton solutions of perturbed nonlinear Schrödinger equation with parabolic law nonlinearity, Optical and Quantum Electronics, 2024, 56(1), 50–68. doi: 10.1007/s11082-023-05564-4

    CrossRef Google Scholar

    [8] E. Buckwar and Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, Journal of Mathematical Analysis and Applications, 1998, 227(1), 81–97. doi: 10.1006/jmaa.1998.6078

    CrossRef Google Scholar

    [9] X. Cheng, J. Hou and L. Wang, Lie symmetry analysis, invariant subspace method and q–homotopy analysis method for solving fractional system of single–walled carbon nanotube, Computational and Applied Mathematics, 2021, 40, 1–17. doi: 10.1007/s40314-020-01383-5

    CrossRef Google Scholar

    [10] M. Eslami, Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations, Applied Mathematics and Computation, 2016, 285, 141–148. doi: 10.1016/j.amc.2016.03.032

    CrossRef Google Scholar

    [11] M. Eslami, B. Fathi Vajargah, M. Mirzazadeh and A. Biswas, Application of first integral method to fractional partial differential equations, Indian Journal of Physics, 2014, 88(2), 177–184. doi: 10.1007/s12648-013-0401-6

    CrossRef Google Scholar

    [12] X. Gao, Auto–Bäcklund transformation with the solitons and similarity reductions for a generalized nonlinear shallow water wave equation, Qualitative Theory of Dynamical Systems, 2024, 23(4), p. 181. doi: 10.1007/s12346-024-01034-8

    CrossRef Google Scholar

    [13] X. Gao, Two–layer–liquid and lattice considerations through a (3+1)–dimensional generalized Yu–Toda–Sasa–Fukuyama system, Applied Mathematics Letters, 2024, 152, p. 109018. doi: 10.1016/j.aml.2024.109018

    CrossRef Google Scholar

    [14] R. Gazizov, A. Kasatkin and S. Y. Lukashchuk, Symmetry properties of fractional diffusion equations, Physica Scripta, 2009, 2009(T136), 014016–014020.

    Google Scholar

    [15] M. S. Hashemi, A. Haji-Badali, F. Alizadeh, et al., Nonclassical Lie symmetry and conservation laws of the nonlinear time–fractional Korteweg–de Vries equation, Communications in Theoretical Physics, 2021, 73(9), 095006–095014. doi: 10.1088/1572-9494/ac09df

    CrossRef Google Scholar

    [16] N. H. Ibragimov, A new conservation theorem, Journal of Mathematical Analysis and Applications, 2007, 333(1), 311–328. doi: 10.1016/j.jmaa.2006.10.078

    CrossRef Google Scholar

    [17] J. Jia, X. Jiang and H. Zhang, An L1 Legendre–Galerkin spectral method with fast algorithm for the two-dimensional nonlinear coupled time fractional Schrödinger equation and its parameter estimation, Computers & Mathematics with Applications, 2021, 82, 13–35.

    Google Scholar

    [18] J. Liu, X. Yang, L. Geng and X. Yu, On fractional symmetry group scheme to the higher–dimensional space and time fractional dissipative Burgers equation, International Journal of Geometric Methods in Modern Physics, 2022, 19(11), 2250173–2250186. doi: 10.1142/S0219887822501730

    CrossRef Google Scholar

    [19] W. Liu and Y. Zhang, Time–fractional Drinfeld–Sokolov–Wilson system: Lie symmetry analysis, analytical solutions and conservation laws, The European Physical Journal Plus, 2019, 134(3), 126–135. doi: 10.1140/epjp/i2019-12490-8

    CrossRef Google Scholar

    [20] I. Naeem and M. D. Khan, Symmetry classification of time–fractional diffusion equation, Communications in Nonlinear Science and Numerical Simulation, 2017, 42, 560–570. doi: 10.1016/j.cnsns.2016.05.022

    CrossRef Google Scholar

    [21] P. J. Olver, Applications of Lie Groups to Differential Equations, 107, Springer Science & Business Media, 1993.

    Google Scholar

    [22] I. Onder, A. Secer and M. Bayram, Optical soliton solutions of time–fractional coupled nonlinear Schrödinger system via Kudryashov–based methods, Optik, 2023, 272, p. 170362. doi: 10.1016/j.ijleo.2022.170362

    CrossRef Google Scholar

    [23] M. Sadaf, S. Arshed, G. Akram, et al., Solitary wave solutions of Camassa–Holm nonlinear Schrödinger and (3+1)–dimensional Boussinesq equations, Optical and Quantum Electronics, 2024, 56(5), 720–740. doi: 10.1007/s11082-024-06379-7

    CrossRef Google Scholar

    [24] Y. Shi, J. Zhang, J. Zhao and S. Zhao, Abundant analytic solutions of the stochastic KdV equation with time–dependent additive white Gaussian noise via Darboux transformation method, Nonlinear Dynamics, 2023, 111(3), 2651–2661. doi: 10.1007/s11071-022-07968-5

    CrossRef Google Scholar

    [25] H. Tariq, M. Sadaf, G. Akram, et al., Computational study for the conformable nonlinear Schrödinger equation with cubic–quintic–septic nonlinearities, Results in Physics, 2021, 30, p. 104839. doi: 10.1016/j.rinp.2021.104839

    CrossRef Google Scholar

    [26] J. Yu and Y. Feng, On the generalized time fractional reaction–diffusion equation: Lie symmetries, exact solutions and conservation laws, Chaos, Solitons & Fractals, 2024, 182, 114855–114860.

    Google Scholar

    [27] Z. Zhang and G. Li, Lie symmetry analysis and exact solutions of the time–fractional biological population model, Physica A: Statistical Mechanics and its Applications, 2020, 540, 123134–123144. doi: 10.1016/j.physa.2019.123134

    CrossRef Google Scholar

Article Metrics

Article views(284) PDF downloads(164) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint