2025 Volume 15 Issue 3
Article Contents

Krishna Murari Malav, Kapil Kant, Joydip Dhar, Gnaneshwar Nelakanti. DISCRETE MULTI-GALERKIN METHODS FOR DERIVATIVE-DEPENDENT HAMMERSTEIN TYPE WEAKLY SINGULAR NONLINEAR FREDHOLM INTEGRAL EQUATIONS WITH GREEN'S KERNEL[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1616-1640. doi: 10.11948/20240324
Citation: Krishna Murari Malav, Kapil Kant, Joydip Dhar, Gnaneshwar Nelakanti. DISCRETE MULTI-GALERKIN METHODS FOR DERIVATIVE-DEPENDENT HAMMERSTEIN TYPE WEAKLY SINGULAR NONLINEAR FREDHOLM INTEGRAL EQUATIONS WITH GREEN'S KERNEL[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1616-1640. doi: 10.11948/20240324

DISCRETE MULTI-GALERKIN METHODS FOR DERIVATIVE-DEPENDENT HAMMERSTEIN TYPE WEAKLY SINGULAR NONLINEAR FREDHOLM INTEGRAL EQUATIONS WITH GREEN'S KERNEL

  • In this article, we study discrete multi-Galerkin and iterated discrete multi-Galerkin methods for solving the derivative-dependent nonlinear Hammerstein type Fredholm integral equations, where the nonlinear function within the integration is dependent on the derivative, and the kernel function is of Green's type. We achieve the error bounds by substituting all integrals in the multi-Galerkin method with numerical quadrature and obtain the superconvergence results for derivative-dependent Fredholm-Hammerstein integral equations using piecewise polynomials as basis functions. By applying the numerical quadrature rule, we prove that the iterated discrete multi-Galerkin method provides superior convergence rates over the discrete multi-Galerkin method with $\mathbb{O}(h^{\min(d+1,~m+2{m_{1}},~m+2{m_{2}})})$, where $h$ represents the norm of the partitions. Numerical results are presented to validate the theoretical findings, with figures illustrating a comparison of the error analysis between the proposed methods and those discussed in [22].

    MSC: 45B05, 45G10, 65R20
  • 加载中
  • [1] J. A. Adam and S. A. Maggelakis, Mathematical models of tumor growth. Ⅳ. Effects of a necrotic core, Math. Biosci., 1989, 97(1), 121–136. doi: 10.1016/0025-5564(89)90045-X

    CrossRef Google Scholar

    [2] G. Adomian, Solution of the Thomas-Fermi equation, Appl. Math. Lett., 1998, 11(3), 131–133. doi: 10.1016/S0893-9659(98)00046-9

    CrossRef Google Scholar

    [3] M. Ahues, A. Largillier and B. Limaye, Spectral Computations for Bounded Operators, Chapman and Hall/CRC, 2001.

    Google Scholar

    [4] C. Allouch, K. Kant and R. Nigam, Spectral projection methods for derivative dependent Hammerstein equations with Green's kernels, Mediterr. J. Math., 2024, 21(3), 48. doi: 10.1007/s00009-024-02589-1

    CrossRef Google Scholar

    [5] N. Anderson and A. M. Arthurs, Analytical bounding functions for diffusion problems with Michaelis-Menten kinetics, Bull. Math. Biol., 1985, 47, 145–153. doi: 10.1016/S0092-8240(85)90009-6

    CrossRef Google Scholar

    [6] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, 1997.

    Google Scholar

    [7] K. E. Atkinson and F. Potra, The discrete Galerkin method for nonlinear integral equations, J. Integral Equations Appl., 1988, 17–54.

    Google Scholar

    [8] K. E. Atkinson, F. Potra and A. Florian, Projection and iterated projection methods for nonlinear integral equations, SIAM J. Numer. Anal., 1987, 24(6), 1352–1373. doi: 10.1137/0724087

    CrossRef Google Scholar

    [9] Z. Cen, Numerical study for a class of singular two-point boundary value problems using Green's functions, Appl. Math. Comput., 2006, 183(1), 10–16.

    Google Scholar

    [10] S. Chakraborty and N. Gnaneshwar, Approximated superconvergent methods for Volterra Hammerstein integral equations, Commun. Nonlinear. Sci. Numer. Simulat., 2024, 130, 107783. doi: 10.1016/j.cnsns.2023.107783

    CrossRef Google Scholar

    [11] S. Chandrasekhar, An introduction to the study of stellar structure, Courier Corporation, 1957, 2.

    Google Scholar

    [12] F. Chatelin, Spectral Approximation of Linear Operators, SIAM, 2011.

    Google Scholar

    [13] G. Chen and J. Zhou, Boundary element methods with applications to nonlinear problems, Springer Science & Business Media, 2010, 7.

    Google Scholar

    [14] Z. Chen, G. Long and G. Nelakanti, The discrete multi-projection method for Fredholm integral equations of the second kind, J. Integral Equations Appl., 2007, 143–162.

    Google Scholar

    [15] M. Danish, S. Kumar, Shashi and S. Kumar, A note on the solution of singular boundary value problems arising in engineering and applied sciences: Use of OHAM, Computers & Chemical Engineering, 2012, 36, 57–67.

    Google Scholar

    [16] L. Grammont, R. P. Kulkarni and P. B. Vasconcelos, Modified projection and the iterated modified projection methods for nonlinear integral equations, J. Integral Equations Appl., 2013, 25(4).

    Google Scholar

    [17] B. F. Gray, The distribution of heat sources in the human head-theoretical considerations, J. Theore. Biol., 1980, 82(3), 473–476. doi: 10.1016/0022-5193(80)90250-7

    CrossRef Google Scholar

    [18] B. Guo, Spectral Methods and their Applications, World Scientific, 1998.

    Google Scholar

    [19] M. Inç and J. Evans, The decomposition method for solving of a class of singular two-point boundary value problems, Int. J. Compu. Math., 2003, 80(7), 869–882. doi: 10.1080/0020716031000087087

    CrossRef Google Scholar

    [20] H. Kaneko, R. D. Noren and Y. Xu, Numerical solutions for weakly singular Hammerstein equations and their superconvergence, J. Integral Equations Appl., 1992, 391–407.

    Google Scholar

    [21] K. Kant, P. Das, G. Nelakanti and B. V. R. Kumar, Modified Galerkin method for derivative dependent Fredholm-Hammerstein integral equations of second kind, Adv. Appl. Math. Mech., 2024.

    Google Scholar

    [22] K. Kant, R. Kumar, S. Chakraborty and G. Nelakanti, Discrete Galerkin and iterated discrete Galerkin methods for derivative-dependent Fredholm–Hammerstein integral equations with Green's kernel, Mediterr. J. Math., 2023, 20(5), 249. doi: 10.1007/s00009-023-02444-9

    CrossRef Google Scholar

    [23] J. B. Keller, Electrohydrodynamics I. The equilibrium of a charged gas in a container, Journal of Rational Mechanics and Analysis, 1956, 715–724.

    Google Scholar

    [24] S. A. Khuri and A. Sayfy, A novel approach for the solution of a class of singular boundary value problems arising in physiology, Math. Comp. Model., 2010, 52(3–4), 626–636. doi: 10.1016/j.mcm.2010.04.009

    CrossRef Google Scholar

    [25] M. Kumar and N. Singh, Modified Adomian decomposition method and computer implementation for solving singular boundary value problems arising in various physical problems, Comput. Chem. Engrg., 2010, 34(11), 1750–1760. doi: 10.1016/j.compchemeng.2010.02.035

    CrossRef Google Scholar

    [26] S. Kumar, Superconvergence of a collocation-type method for hummerstein equations, IMA J. Numer. Anal., 1987, 7(3), 313–313. doi: 10.1093/imanum/7.3.313

    CrossRef Google Scholar

    [27] S. Kumar and I. H. Sloan, A new collocation-type method for Hammerstein integral equations, Math. Comput., 1987, 48(178), 585–593. doi: 10.1090/S0025-5718-1987-0878692-4

    CrossRef Google Scholar

    [28] M. Mandal, K. Kant and G. Nelakanti, Convergence analysis for derivative dependent Fredholm-Hammerstein integral equations with Green's kernel, J. Comput. Appl. Math., 2020, 370, 112599. doi: 10.1016/j.cam.2019.112599

    CrossRef Google Scholar

    [29] M. Mandal and G. Nelakanti, Superconvergence results for weakly singular Fredholm–Hammerstein integral equations, Numer. Funct. Anal. Optim., 2019, 40(5), 548–570. doi: 10.1080/01630563.2018.1561468

    CrossRef Google Scholar

    [30] N. Nahid and G. Nelakanti, Discrete projection methods for Hammerstein integral equations on the half-line, Calcolo, 2020, 57(4), 37. doi: 10.1007/s10092-020-00386-2

    CrossRef Google Scholar

    [31] R. Nigam, N. Nahid, S. Chakraborty and G. Nelakanti, Discrete projection methods for Fredholm–Hammerstein integral equations using Kumar and Sloan technique, Calcolo, 2024, 61(2), 21. doi: 10.1007/s10092-024-00573-5

    CrossRef Google Scholar

    [32] B. L. Panigrahi, Error analysis of Jacobi spectral collocation methods for Fredholm-Hammerstein integral equations with weakly singular kernel, Int. J. Comput. Math., 2019, 96(6), 1230–1253. doi: 10.1080/00207160.2018.1515428

    CrossRef Google Scholar

    [33] Y. Rostami, A new wavelet method for solving a class of nonlinear partial integro-differential equations with weakly singular kernels, Math. Sci., 2022, 16(3), 225–235. doi: 10.1007/s40096-021-00414-4

    CrossRef Google Scholar

    [34] Y. Rostami, An effective computational approach based on Hermite wavelet Galerkin for solving parabolic Volterra partial integro differential equations and its convergence analysis, Math. Model. Anal., 2023, 28(1), 163–179. doi: 10.3846/mma.2023.15690

    CrossRef Google Scholar

    [35] Y. Rostami and K. Maleknejad, Comparison of two hybrid functions for numerical solution of nonlinear mixed partial integro-differential equations, Iranian J. Sci. and Tech., Transactions A: Science, 2022, 46(2), 645–658. doi: 10.1007/s40995-022-01277-7

    CrossRef Google Scholar

    [36] Y. Rostami and K. Maleknejad, The solution of the nonlinear mixed partial integro-differential equation via two-dimensional hybrid functions, Mediterr. J. Math., 2022, 19(2), 89. doi: 10.1007/s00009-022-01998-4

    CrossRef Google Scholar

    [37] Y. Rostami and K. Maleknejad, Approximate solution to solve singular variable-order fractional Volterra–Fredholm integral partial differential equations type defined using hybrid functions, Int. J. Comput. Math., 2024.

    Google Scholar

    [38] Y. Rostami and K. Maleknejad, A novel approach to solving system of integral partial differential equations based on hybrid modified block-pulse functions, Math. Methods Appl. Sci., 2024, 47(4), 5798–5818.

    Google Scholar

    [39] R. Singh, J. Kumar and G. Nelakanti, Numerical solution of singular boundary value problems using Green's function and improved decomposition method, J. Appl. Math. Comput., 2013, 43, 409–425. doi: 10.1007/s12190-013-0670-4

    CrossRef Google Scholar

    [40] R. Singh, J. Kumar and G. Nelakanti, Approximate series solution of singular boundary value problems with derivative dependence using Green's function technique, Comput. Appl. Math., 2014, 33, 451–467. doi: 10.1007/s40314-013-0074-y

    CrossRef Google Scholar

    [41] I. H. Sloan, Polynomial interpolation and hyperinterpolation over general regions, J. Approx. Theory, 1995, 83(2), 238–254.

    Google Scholar

    [42] G. M. Vainikko, Galerkin's perturbation method and the general theory of approximate methods for non-linear equations, USSR Comput. Math. and Math. Phy., 1967, 7(4), 1–41.

    Google Scholar

Figures(2)  /  Tables(4)

Article Metrics

Article views(327) PDF downloads(207) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint