2025 Volume 15 Issue 3
Article Contents

Cheng Wang, Fei Guan, Qianqian Zhao. LIMIT CYCLES BIFURCATED FROM A KIND OF PIECEWISE SMOOTH GENERALIZED ABEL EQUATION VIA THE FIRST ORDER MELNIKOV ANALYSIS[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1695-1702. doi: 10.11948/20240338
Citation: Cheng Wang, Fei Guan, Qianqian Zhao. LIMIT CYCLES BIFURCATED FROM A KIND OF PIECEWISE SMOOTH GENERALIZED ABEL EQUATION VIA THE FIRST ORDER MELNIKOV ANALYSIS[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1695-1702. doi: 10.11948/20240338

LIMIT CYCLES BIFURCATED FROM A KIND OF PIECEWISE SMOOTH GENERALIZED ABEL EQUATION VIA THE FIRST ORDER MELNIKOV ANALYSIS

  • Author Bio: Email: mathwc@126.com(C. Wang); Email: guanfei@hueb.edu.cn(F. Guan)
  • Corresponding author: Email: zqqyly@hueb.edu.cn(Q. Zhao)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (12001265, 12301195), Natural Science Foundation of Jiangsu Province, China (BK20200829), Anhui Provincial Key Projects in Humanities and Social Sciences in Higher Education Institutions (SK2020A0475), Key Program of Hebei University of Economics and Business (2024ZD12) and Science Research Project of Hebei Education Department (QN2023168)
  • The study of the existence and distribution of limit cycles for generalized Abel equations comes from the famous Small-Pugh problem, which has been extended to non-smooth case. In this paper, we consider a kind of piecewise smooth generalized Abel equation with the separation line $ t=0 $. We are interested in its number of nontrivial limit cycles which are bifurcated from the periodic annulus of unperturbed equation. Under the first order Melnikov analysis, we show that the upper bound of this kind nontrivial limit cycles is $ 2(m+1) $ if $ p $ is odd, and $ m+1 $ if $ p $ is even. The upper bound in both cases can be reached separately.

    MSC: 34C07, 34C23, 34C25
  • 加载中
  • [1] M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations, J. Differential Equations, 2007, 234(1), 161–176. doi: 10.1016/j.jde.2006.11.004

    CrossRef Google Scholar

    [2] D. M. Benardete, V. W. Noonburg and B. Pollina, Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation, Amer. Math. Monthly, 2008, 115(3), 202–219. doi: 10.1080/00029890.2008.11920518

    CrossRef Google Scholar

    [3] L. A. Cherkas, The number of limit cycles of a certain second order autonumous system, Differencial'nye Uravnenija, 1976, 12(5), 944–946, 960.

    Google Scholar

    [4] E. Fossas, J. M. Olm and H. Sira-Ramírez, Iterative approximation of limit cycles for a class of Abel equations, Phys. D, 2008, 237(23), 3159–3164. doi: 10.1016/j.physd.2008.05.011

    CrossRef Google Scholar

    [5] A. Gasull, Some open problems in low dimensional dynamical systems, SeMA J., 2021, 78(3), 233–269. doi: 10.1007/s40324-021-00244-3

    CrossRef Google Scholar

    [6] A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2006, 16(12), 3737–3745. doi: 10.1142/S0218127406017130

    CrossRef Google Scholar

    [7] A. Gasull, C. Li and J. Torregrosa, A new Chebyshev family with applications to Abel equations, J. Differential Equations, 2012, 252(2), 1635–1641. doi: 10.1016/j.jde.2011.06.010

    CrossRef Google Scholar

    [8] A. Gasull and J. Llibre, Limit cycles for a class of Abel equations, SIAM J. Math. Anal., 1990, 21(5), 1235–1244. doi: 10.1137/0521068

    CrossRef Google Scholar

    [9] M. Han, On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, J. Appl. Anal. Comput., 2017, 7(2), 788–794.

    Google Scholar

    [10] M. Han and L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 2015, 5(4), 809–815.

    Google Scholar

    [11] M. Han and J. Yang, The maximum number of zeros of functions with parameters and application to differential equations, J. Nonlinear Model. Anal., 2021, 3(1), 13–34.

    Google Scholar

    [12] T. Harko and M. K. Mak, Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach, Math. Biosci. Eng., 2015, 12(1), 41–69. doi: 10.3934/mbe.2015.12.41

    CrossRef Google Scholar

    [13] J. Huang and J. Li, On the number of limit cycles in piecewise smooth generalized Abel equations with two asymmetric zones, Nonlinear Anal. Real World Appl., 2022, 66, Paper No. 103551, 17.

    Google Scholar

    [14] J. Huang and H. Liang, A geometric criterion for equation $\dot x=\sum^m_{i=0}a_i(t)x^i$ having at most $m$ isolated periodic solutions, J. Differential Equations, 2020, 268(10), 6230–6250.

    $\dot x=\sum^m_{i=0}a_i(t)x^i$ having at most $m$ isolated periodic solutions" target="_blank">Google Scholar

    [15] J. Huang, H. Liang and J. Llibre, Non-existence and uniqueness of limit cycles for planar polynomial differential systems with homogeneous nonlinearities, J. Differential Equations, 2018, 265(9), 3888–3913.

    Google Scholar

    [16] J. Huang and Z. Peng, Bifurcation of a kind of piecewise smooth generalized Abel equation via first and second order analyses, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2020, 30(16), 2050247, 20.

    Google Scholar

    [17] J. Huang, J. Torregrosa and J. Villadelprat, On the number of limit cycles in generalized Abel equations, SIAM J. Appl. Dyn. Syst., 2020, 19(4), 2343–2370.

    Google Scholar

    [18] J. Huang and Y. Zhao, Periodic solutions for equation $\dot x=A(t)x^m+B(t)x^n+C(t)x^l$ with $A(t)$ and $B(t)$ changing signs, J. Differential Equations, 2012, 253(1), 73–99.

    $\dot x=A(t)x^m+B(t)x^n+C(t)x^l$ with $A(t)$ and $B(t)$ changing signs" target="_blank">Google Scholar

    [19] M. Krusemeyer, The teaching of mathematics: Why does the wronskian work?, Amer. Math. Monthly, 1988, 95(1), 46–49.

    Google Scholar

    [20] C. J. Liu and S. Q. Wang, On the center problem for generalized Abel equations, Acta Math. Sin. (Engl. Ser.), 2023, 39(12), 2329–2337.

    Google Scholar

    [21] N. G. Lloyd, The number of periodic solutions of the equation $\dot z=z^{N}+p_{1}(t)z^{N-1}+...+p_{N}(t)$, Proc. London Math. Soc. (3), 1973, 27, 667–700.

    $\dot z=z^{N}+p_{1}(t)z^{N-1}+...+p_{N}(t)$" target="_blank">Google Scholar

    [22] N. G. Lloyd, On a class of differential equations of Riccati type, J. London Math. Soc. (2), 1975, 10, 1–10.

    Google Scholar

    [23] N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems, J. London Math. Soc. (2), 1979, 20(2), 277–286.

    Google Scholar

    [24] A. Lins Neto, On the number of solutions of the equation $dx/dt=\sum ^{n}_{j=0} a_{j}(t)x^{j}$, $0\leq t\leq 1$, for which $x(0)=x(1)$, Invent. Math., 1980, 59(1), 67–76.

    $dx/dt=\sum ^{n}_{j=0} a_{j}(t)x^{j}$, $0\leq t\leq 1$, for which $x(0)=x(1)$" target="_blank">Google Scholar

    [25] A. A. Panov, Variety of Poincaré mappings for cubic equations with variable coefficients, Funktsional. Anal. i Prilozhen., 1999, 33(4), 84–88.

    Google Scholar

    [26] S. Smale, Mathematical problems for the next century, in Mathematics: Frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, 271–294.

    Google Scholar

    [27] R. Tian and Y. Zhao, On the number of limit cycles in piecewise smooth generalized Abel equations with many separation lines, Nonlinear Anal. Real World Appl., 2024, 80, Paper No. 104151.

    Google Scholar

    [28] Y. Tian, X. Shang and M. Han, Bifurcation of limit cycles in a piecewise smooth near-integrable system, J. Math. Anal. Appl., 2021, 504(2), Paper No. 125578, 11.

    Google Scholar

    [29] X. Yu, J. Huang and C. Liu, Maximum number of limit cycles for Abel equation having coefficients with linear trigonometric functions, J. Differential Equations, 2024, 410, 301–318.

    Google Scholar

    [30] Q. Zhao, J. Yu and C. Wang, Nontrivial limit cycles in a kind of piecewise smooth generalized Abel equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2022, 32(14), Paper No. 2250216, 18.

    Google Scholar

Figures(2)

Article Metrics

Article views(282) PDF downloads(110) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint