2025 Volume 15 Issue 5
Article Contents

Hadjer Zerouali, Ahcene Merad, Ali Akgül, Douha Saadi, Nourhane Attia, Evren Hincal. NUMERICAL METHOD FOR SOLVING PSEUDO-HYPERBOLIC EQUATIONS WITH PURELY INTEGRAL CONDITIONS IN REPRODUCING KERNEL HILBERT SPACE[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2611-2636. doi: 10.11948/20240340
Citation: Hadjer Zerouali, Ahcene Merad, Ali Akgül, Douha Saadi, Nourhane Attia, Evren Hincal. NUMERICAL METHOD FOR SOLVING PSEUDO-HYPERBOLIC EQUATIONS WITH PURELY INTEGRAL CONDITIONS IN REPRODUCING KERNEL HILBERT SPACE[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2611-2636. doi: 10.11948/20240340

NUMERICAL METHOD FOR SOLVING PSEUDO-HYPERBOLIC EQUATIONS WITH PURELY INTEGRAL CONDITIONS IN REPRODUCING KERNEL HILBERT SPACE

  • This paper studies a pseudo-hyperbolic equation with purely integral conditions using the reproducing kernel Hilbert space method (RKHSM). By leveraging the properties of reproducing kernel functions (RKFs), we derive exact and approximate solutions to the equation. We present three numerical examples to assess our approach's efficiency and accuracy. The results demonstrate that the RKHSM yields highly accurate approximations, underscoring its effectiveness as a reliable method for solving pseudo-hyperbolic equations with integral constraints. Our findings contribute to the growing research on analytical and numerical techniques for solving such equations.

    MSC: 46E22, 65Nxx
  • 加载中
  • [1] A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solitons Fractals, 2018, 114, 478–482.

    Google Scholar

    [2] A. Akgül and E. Bonyah, Reproducing kernel Hilbert space method for the solutions of generalized Kuramoto-Sivashinsky equation, J. Taibah Univ. Sci., 2019, 13(1), 661–669. doi: 10.1080/16583655.2019.1618547

    CrossRef Google Scholar

    [3] A. Akgül, A. Cordero and J. R. Torregrosa, Solutions of fractional gas dynamics equation by a new technique, Math. Methods Appl. Sci., 2020, 43, 1349–1358. doi: 10.1002/mma.5950

    CrossRef Google Scholar

    [4] A. Akgül, M. Inc, E. Karatas and D. Baleanu, Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique, Adv. Differ. Equ., 2015, 2015, 220. doi: 10.1186/s13662-015-0558-8

    CrossRef Google Scholar

    [5] K. K. Ali, M. A. Abd El Salam, E. M. H. Mohamed, B. Samet, S. Kumar and M. S. Osman, Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series, Adv. Differ. Equ., 2020, 2020(1), 494. doi: 10.1186/s13662-020-02951-z

    CrossRef Google Scholar

    [6] T. Allahviranloo and H. Sahihi, Reproducing kernel method to solve fractional delay differential equations, App. Math. Comput., 2021, 400, 126095. doi: 10.1016/j.amc.2021.126095

    CrossRef Google Scholar

    [7] R. Arima and Y. Hasegawa, On global solutions for mixed problems of a semi-linear differential equation, Proc. Japan Acad., 1963, 39(10), 721–725.

    Google Scholar

    [8] N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc., 1950, 68, 337–404.

    Google Scholar

    [9] O. Abu Arqub, M. S. Osman, C. Park, J. R. Lee, H. Alsulami and M. Alhodaly, Development of the reproducing kernel Hilbert space algorithm for numerical pointwise solution of the time-fractional nonlocal reaction-diffusion equation, Alex. Eng. J., 2022, 61(12), 10539–10550. doi: 10.1016/j.aej.2022.04.008

    CrossRef Google Scholar

    [10] O. Abu Arqub, J. Singh, B. Maayah and M. Alhodaly, Reproducing kernel approach for numerical solutions of fuzzy fractional initial value problems under the Mittag-Leffler kernel differential operator, Math. Methods Appl. Sci., 2023, 46(7), 7965–7986. doi: 10.1002/mma.7305

    CrossRef Google Scholar

    [11] O. Abu Arqub, S. Tayebi, D. Baleanu, M. S. Osman, W. Mahmoud and H. Alsulami, A numerical combined algorithm in cubic B-spline method and finite difference technique for the time-fractional nonlinear diffusion wave equation with reaction and damping terms, Results Phys., 2022, 41, 105912.

    Google Scholar

    [12] A. Attia, A. Akgül, D. Seba and A. Nour, On solutions of time-fractional advection-diffusion equation, Numer. Methods Partial Differ. Equ., 2023, 39(6), 4489–4516. doi: 10.1002/num.22621

    CrossRef Google Scholar

    [13] B. Azarnavid, The Bernoulli polynomials reproducing kernel method for nonlinear Volterra integro-differential equations of fractional order with convergence analysis, Comput. Appl. Math., 2022, 42(1), 8.

    Google Scholar

    [14] E. Babolian, S. Javadi and E. Moradi, RKM for solving Bratu-type differential equations of fractional order, Math. Meth. Appl. Sci., 2016, 39(6), 1548–1557. doi: 10.1002/mma.3588

    CrossRef Google Scholar

    [15] S. Bergman, Sur un lien entre la théorie des equations aux derivées partielles elliptiques et celle des functions d'une variable complexe, C. R. Acad. Sci. Paris, 1937, 205, 1198.

    Google Scholar

    [16] H. Beyrami and T. Lotfi, A novel method with error analysis for the numerical solution of a logarithmic singular Fredholm integral equation, Afr. Mat., 2023, 34(2), 33. doi: 10.1007/s13370-023-01073-5

    CrossRef Google Scholar

    [17] A. Bouziani, On a classe of nonclassical hyperbolic equations with nonlocal conditions, Int. J. Stoch. Anal., 2002, 15(2), 141476.

    Google Scholar

    [18] A. Bouziani and N.-E. Benouar, Mixed problem with integral conditions for a third order parabolic equation, Kobe J. Math., 1998, 15(1), 47–58.

    Google Scholar

    [19] Y. Chellouf, B. Maayah, S. Momani, A. Alawneh and S. Alnabulsi, Numerical solution of fractional differential equations with temporal two-point BVPs using reproducing kernal Hilbert space method, AIMS Math, 2021, 6(4), 3465–3485. doi: 10.3934/math.2021207

    CrossRef Google Scholar

    [20] M. Cui and Y. Lin, Nonlinear Numerical Analysis in Reproducing Kernel Space, Nova Science Publishers, Inc., 2009.

    Google Scholar

    [21] K. Dehingia, S. Boulaaras, E. Hinçal, K. Hosseini, T. Abdeljawad and M. S. Osman, On the dynamics of a financial system with the effect financial information, Alex. Eng. J., 2024, 106, 438–447. doi: 10.1016/j.aej.2024.08.049

    CrossRef Google Scholar

    [22] S. Djennadi, N. Shawagfeh, M. Inc, M. S. Osman, J. F. Gómez-Aguilar and O. Abu Arqub, The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique, Phys. Scr., 2021, 96(9), 094006. doi: 10.1088/1402-4896/ac0867

    CrossRef Google Scholar

    [23] M. Fardi and M. Ghasemi, Solving nonlocal initial-boundary value problems for parabolic and hyperbolic integro-differential equations in reproducing kernel hilbert space, Numer. Methods Partial Differ. Equ., 2017, 33(1), 174–198. doi: 10.1002/num.22079

    CrossRef Google Scholar

    [24] F. Geng and M. Cui, New method based on the HPM and RKHSM for solving forced Duffing equations with integral boundary conditions, J. Comput. Appl. Math., 2009, 233(2), 165–172. doi: 10.1016/j.cam.2009.07.007

    CrossRef Google Scholar

    [25] H. Guo and H. Rui, Least-squares Galerkin procedures for pseudohyperbolic equations, Appl. Math. Comput., 2007, 189(1), 425–439.

    Google Scholar

    [26] F. Hemati, M. Ghasemi and R. Khoshsiar Ghaziani, Numerical solution of the multiterm time-fractional diffusion equation based on reproducing kernel theory, Numer. Methods Partial Differ. Equ., 2021, 37(1), 44–68. doi: 10.1002/num.22518

    CrossRef Google Scholar

    [27] M. Inc and A. Akgül, The reproducing kernel Hilbert space method for solving Troesch's problem, J. Assoc. Arab Univ. Basic Appl. Sci., 2013, 14(1), 19–27.

    Google Scholar

    [28] W. Jiang and M. Cui, Solving nonlinear singular pseudoparabolic equations with nonlocal mixed conditions in the reproducing kernel space, Int. J. Comput. Math., 2010, 87(15), 3430–3442.

    Google Scholar

    [29] A. Khalid, A. S. A. Alsubaie, M. Inc, A. Rehan, W. Mahmoud and M. S. Osman, Cubic splines solutions of the higher order boundary value problems arise in sandwich panel theory, Results Phys., 2022, 39, 105726.

    Google Scholar

    [30] S. Kumar, R. P. Chauhan, M. S. Osman and S. A. Mohiuddine, A study on fractional HIV-AIDs transmission model with awareness effect, Math. Methods Appl. Sci., 2023, 46(7), 8334–8348.

    Google Scholar

    [31] X. Li and B. Wu, New algorithm for nonclassical parabolic problems based on the reproducing kernel method, Math. Sci., 2013, 7(1), 4.

    Google Scholar

    [32] Y. Lin and Y. Zhou, Solving nonlinear pseudoparabolic equations with nonlocal boundary conditions in reproducing kernel space, Numer. Algorithms, 2009, 52(2), 173–186.

    Google Scholar

    [33] Y. Liu, H. Li, J. Wang and S. He, Splitting positive definite mixed element methods for pseudo-hyperbolic equations, Numer. Methods Partial Differ. Equ., 2012, 28(2), 670–688.

    Google Scholar

    [34] Y. Liu, J. Wang, H. Li, W. Gao and S. He, A new splitting $H. 1$-Galerkin mixed method for pseudo-hyperbolic equations, Int. J. Comput. Math., 2011, 5(3), 413–418.

    Google Scholar

    [35] V. A. Makhlai, I. E. Garkusha, S. S. Herashchenko, O. V. Byrka, N. N. Aksenov, S. V. Malykhin, S. V. Surovitskiy and M. Wirtz, Contribution of leading edge shape to a damaging of castellated tungsten targets exposed to repetitive QSPA plasma loads, Phys. Scr., 2021, 96(12), 124043. doi: 10.1088/1402-4896/ac2d86

    CrossRef Google Scholar

    [36] A. Merad and A. Bouziani, Laplace transform technique for pseudoparabolic equation with nonlocal conditions, TJMM, 2013, 5(1), 59–64.

    Google Scholar

    [37] A. Merad and A. Bouziani, Solvability the telegraph equation with purely integral conditions, TWMS J. App. Eng. Math., 2013, 3(1), 117–125.

    Google Scholar

    [38] A. Merad, A. Bouziani and S. Araci, Existence and uniqueness for a solution of pseudohyperbolic equation with nonlocal boundary condition, Appl. Math. Inf. Sci., 2015, 9(4), 1855–1861.

    Google Scholar

    [39] S. Momani, N. Djeddi, M. Al-Smadi and S. Al-Omari, Numerical investigation for Caputo-Fabrizio fractional Riccati and Bernoulli equations using iterative reproducing kernel method, Appl. Numer. Math., 2021, 170, 418–434.

    Google Scholar

    [40] J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE., 1962, 50(10), 2061–2070.

    Google Scholar

    [41] A. Necib and A. Merad, Laplace transform and homotopy perturbation methods for solving the pseudohyperbolic integrodifferential problems with purely integral conditions, KJM, 2020, 44(2), 251–272.

    Google Scholar

    [42] C. V. Pao, A mixed initial boundary-value problem arising in neurophysiology, J. Math. Anal. Appl., 1975, 52(1), 105–119.

    Google Scholar

    [43] G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal. Theory Methods Appl., 1985, 9(5), 399–418.

    Google Scholar

    [44] L. S. Pulkina, Solution to nonlocal problems of pseudohyperbolic equations, EJDE, 2012, 2012(116), 1–9.

    Google Scholar

    [45] S. Rashid, K. T. Kubra, S. Sultana, P. Agarwal and M. S. Osman, An approximate analytical view of physical and biological models in the setting of Caputo operator via Elzaki transform decomposition method, J. Comput. Appl. Math., 2022, 413, 114378.

    Google Scholar

    [46] M. G. Sakar, O. Saldır and A. Akgül, A novel technique for fractional Bagley-Torvik equation, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 2019, 89(3), 539–545.

    Google Scholar

    [47] L. Shi, S. Tayebi, O. Abu Arqub, M. S. Osman, P. Agarwal, W. Mahamoud, M. Abdel-Aty and M. Alhodaly, The novel cubic B-spline method for fractional Painlevé and Bagley-Trovik equations in the Caputo, Caputo-Fabrizio, and conformable fractional sense, Alex. Eng. J., 2023, 65, 413–426.

    Google Scholar

    [48] L.-H. Yang and Y. Lin, Reproducing kernel methods for solving linear initial-Boundary-value problems, EJDE, 2008, 2008(29), 1–11.

    Google Scholar

    [49] S. Zaremba, Sur le calcul numérique des fonctions demandées dans le probléme de Dirichlet et le probléme hydrodynamique, Bull. Int. Acad. Sci. Crac., 1908, 68, 125–195.

    Google Scholar

Figures(15)  /  Tables(3)

Article Metrics

Article views(121) PDF downloads(83) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint