Citation: | Tingting Liu, Juanping Gao, Wenhui Ma. BACKWARDS DYNAMICS OF TIME-DEPENDENT ATTRACTOR FOR PLATE EQUATION ON THE WHOLE SPACE[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3557-3575. doi: 10.11948/20240349 |
In this paper, we give the definition and criterion for the existence of backwards compact time-dependent attractor which is the minimal one among the backwards compact and pullback attracting sets in time-dependent whole space. Combining with the method of $ C_t- $limit compact and backwards asymptotic estimates outside a ball, the existence of backwards compact time-dependent attractor for stretchable plate equation with localized weak damping on the whole space is obtained.
[1] | M. Aouadi, Continuity properties of pullback and pullback exponential attractors for non-autonomous plate with p-Laplacian, Appl. Math. Optim., 2024, 89(1), 41 pp. |
[2] | G. S. Aragão, F. D. M. Bezerra, et al., Continuity of pullback attractors for evolution processes associated with semilinear damped wave equations with time-dependent coefficients, J. Differ. Equ., 2021, 298(2), 30–67. |
[3] | Z. Arat, A. Khanmamedov and S. Simsek, Global attractors for the plate equation with nonlocal nonlinearity in unbounded domains, Dyn. Partial Differ. Equ., 2014, 11(4), 361–379. doi: 10.4310/DPDE.2014.v11.n4.a4 |
[4] | J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 1973, 42(1), 61–90. doi: 10.1016/0022-247X(73)90121-2 |
[5] | T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Anal., 2010, 72(3–4), 1967–1976. doi: 10.1016/j.na.2009.09.037 |
[6] | A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractor for Infinite-Dimensional Nonautonomous Dynamical Systems, in: Appl. Math. Sciences, vol. 182, Springer, 2013. |
[7] | J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge: Cambridge University Press, 2000. |
[8] | M. Conti, V. Pata and R. Temam, Attractors for processes on time-dependent spaces. Applications to wave equations, J. Differential Equations, 2013, 255(6), 1254–1277. doi: 10.1016/j.jde.2013.05.013 |
[9] | H. Y. Cui, J. A. Langa and Y. R. Li, Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Anal., 2016, 140, 208–235. doi: 10.1016/j.na.2016.03.012 |
[10] | B. W. Feng, M. A. Jorge Silva and A. H. Caixeta, Long-time behavior for a class of semi-linear viscoelastic Kirchhoff beams/plates, Appl. Math. Optim., 2020, (82)2, 657–686. |
[11] | J. R. Kang, Pullback attractors for a non-autonomous plate equations, Appl. Anal., 2014, 93(4), 875–888. doi: 10.1080/00036811.2013.817558 |
[12] | A. Khanmamedov, Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain, J. Differ. Equ., 2006, 225(2), 528–548. doi: 10.1016/j.jde.2005.12.001 |
[13] | A. Khanmamedov and S. Simsek, Existence of the global attractor for the plate equation with nonlocal nonlinearity in $\mathbb{R}^n$, Discrete Contin. Dyn. Syst. Ser. B, 2016, 21(1), 151–172. |
[14] | P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, American Mathematical Society, Providence, 2011. |
[15] | S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, J. Appl. Mech., 1950, 17, 35–36. doi: 10.1115/1.4010053 |
[16] | F. Z. Li and D. M. Xu, Backward regularity of attractors for lattice FitzHugh-Nagumo system with double random coefficients, Appl. Math. Comput., 2022, 430, 21 pp. |
[17] | Y. R. Li and Q. H. Zhang, Backward stability and divided invariance of an attractor for the delayed Navier-Stokes equation, Taiwanese J. Math., 2020, 24(3), 575–601. |
[18] | T. T. Liu and Q. Z. Ma, Time-dependent attractor for plate equations on $R^{n}$, J. Math. Anal. Appl., 2019, 479(1), 315–332. doi: 10.1016/j.jmaa.2019.06.028 |
[19] | T. T. Liu, Q. Z. Ma and L. Xu, Attractor of the Kirchhoff type plate equation with memory and nonlinear damping on the whole time-dependent space, Discrete Contin. Dyn. Syst. Ser. B, 2022, 27(12), 7351–7372. doi: 10.3934/dcdsb.2022046 |
[20] | F. J. Meng and C. C. Liu, Necessary and sufficient conditions for the existence of time-dependent global attractor and application, J. Math. Phys., 2017, 58(3), 9 pp. |
[21] | F. J. Meng, M. H. Yang and C. K. Zhong, Attractors for wave equations with nonlinear damping on time-dependent space, Discrete Contin. Dyn. Syst. Ser. B, 2016, 21(1), 205–225. |
[22] | F. Di. Plinio, G. S. Duane and R. Temam, Time-dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 2011, 29(1), 141–167. doi: 10.3934/dcds.2011.29.141 |
[23] | H. B. Xiao, Asymptotic dynamtics of plate equation with a critical exponent on unbounded domain, Nonlinear Anal., 2009, 70(3), 1288–1301. doi: 10.1016/j.na.2008.02.012 |
[24] | L. Yang, Uniform attractors for nonautonomous plate equations with a localized damping and a critical nonlinearity, J. Math. Anal. Appl., 2008, 338, 1243–1254. doi: 10.1016/j.jmaa.2007.06.011 |
[25] | S. Yang, T. Caraballo and Q. H. Zhang, Sufficient and necessary criteria for backward asymptotic autonomy of pullback attractors with applications to retarded Sine-Gordon lattice systems, J. Math. Phys., 2024, 65(5), 16 pp. |
[26] | X. G. Yang, M. J. D. Nascimento and M. L. Pelicer, Uniform attractors for non-autonomous plate equations with p-Laplacian perturbation and critical nonlinearities, Discrete Contin. Dyn. Syst., 2020, 40(3), 1937–1961. doi: 10.3934/dcds.2020100 |
[27] | Z. J. Yang and P. Y. Ding, Longtime dynamics of the Kirchhoff equation with strong damping and critical nonlinearity on $\mathbb{R}^{N}$, J. Math. Anal. Appl., 2016, 434(2), 1826–1851. doi: 10.1016/j.jmaa.2015.10.013 |
[28] | J. Y. Yin, Y. R. Li and A. H. Gu, Backwards compact attractors and periodic attractors for non-autonomous damped wave equations on an unbounded domain, Comput. Math. Appl., 2017, 74, 744–758. doi: 10.1016/j.camwa.2017.05.015 |
[29] | S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 2004, 3(4), 921–934. doi: 10.3934/cpaa.2004.3.921 |