Citation: | Caijing Jiang, Fengzhen Long. EXISTENCE AND EXPONENTIAL STABILITY FOR A NEW CLASS OF FIRST-ORDER IMPULSIVE EVOLUTION EQUATIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3535-3556. doi: 10.11948/20240477 |
The aim of this paper is to present systematic methods for analyzing the existence and the exponential stability of a new class of first-order impulsive evolution equations. We initially provide two existence results of mild solutions for the equations using two kinds of methods. Subsequently, we also explore the exponential stability of the equation. Lastly, we present some applications in differential hemivariational inequalities to demonstrate our main results.
[1] | Y. K. Chang, J. J. Nieto and Z. H. Zhao, Existence results for a nondensely-defined impulsive neutral differential equation with state-dependent delay, Nonlinear Analysis: Hybrid Systems, 2010, 4(3), 593–599. doi: 10.1016/j.nahs.2010.03.006 |
[2] | F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. |
[3] | R. Grimmer and G. Seifert, Stability properties of Volterra integro-differential equations, J. Diff. Equ., 1975, 19, 142–166. doi: 10.1016/0022-0396(75)90025-X |
[4] | Van Neerven JMAM, Exponential stability of operators and operator semigroups, J. Funct. Anal., 1995, 130, 293–309. doi: 10.1006/jfan.1995.1071 |
[5] | V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989. |
[6] | X. D. Li and P. Li, Stability of time-delay systems with impulsive control involving stabilizing delays, Automatica, 2021, 124, 109336. doi: 10.1016/j.automatica.2020.109336 |
[7] | X. J. Li and J. M. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boster, 1995. |
[8] | X. W. Li, Z. H. Liu and M. Sofonea, Unique solvability and exponential stability of differential hemivariational inequalities, Applicable Analysis, 2020, 99(14), 2489–2506. doi: 10.1080/00036811.2019.1569226 |
[9] | J. H. Liu, Nonlinear impulsive evolution equations, Dynam. Contin. Discrete Impuls. Sys., 1999, 6, 77–85. |
[10] | Z. H. Liu, S. Migórski and S. D. Zeng, Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, J. Diff. Equ., 2017, 263, 3989–4006. doi: 10.1016/j.jde.2017.05.010 |
[11] | Z. H. Liu, S. D. Zeng and D. Motreanu, Evolutionary problems driven by variational inequalities, J. Diff. Equ., 2016, 260, 6787–6799. doi: 10.1016/j.jde.2016.01.012 |
[12] | J. Lu, B. Jiang and W. X. Zheng, Potential impacts of delay on stability of impulsive control systems, IEEE Transactions on Automatic Control, 2022, 67(10), 5179–5190. doi: 10.1109/TAC.2021.3120672 |
[13] | S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities, Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013. |
[14] | B. M. Miller and E. Ya. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic/Plenum Publishers, New York, 2003. |
[15] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. |
[16] | A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995. |
[17] | M. Sofonea and A. Matei, History-dependent quasivariational inequalities arising in contact mechanics, European Journal of Applied Mathematics, 2011, 22, 471–491. doi: 10.1017/S0956792511000192 |
[18] | M. Sofonea and S. Migórski, Variational-Hemivariational Inequalities with Applications, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, 2017. |
[19] | J. R. Wang, M. Fečkan and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 2011, 8(4), 345–362. doi: 10.4310/DPDE.2011.v8.n4.a3 |
[20] | J. R. Wang, M. Fečkan and Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 2016, 19(4), 806–831. doi: 10.1515/fca-2016-0044 |
[21] | C. Xiao, B. Zeng and Z. H. Liu, Feedback control for fractional impulsive evolution systems, Appl. Math. Comput., 2015, 268, 924–936. |
[22] | S. Zavalishchin and A. Sesekin, Dynamic Impulse Systems, Theory and Applications, Kluwer Academic Publishers Group, Dordrecht, 1997. |
[23] | B. Zeng, Feedback control systems governed by evolution equations, Optimization, 2019, 68, 1223–1243. doi: 10.1080/02331934.2019.1578358 |
[24] | B. Zeng, Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives, Evolution Equations and Control Theory, 2022, 11(1), 239–258. doi: 10.3934/eect.2021001 |
[25] | B. Zeng and Z. H. Liu, Existence results for impulsive feedback control systems, Nonlinear Analysis: Hybrid Systems, 2019, 33, 1–16. doi: 10.1016/j.nahs.2019.01.008 |
[26] | W. Zhang and M. Fan, Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Math. Comput. Model., 2004, 39, 479–493. doi: 10.1016/S0895-7177(04)90519-5 |
[27] | X. Zhang, Z. J. Zhang, Y. T. Wang and X. Wang, New global exponential stability conditions for nonlinear delayed differential systems with three kinds of time-varying delays, Nonlinearity, 2024, 37, 095014. doi: 10.1088/1361-6544/ad6126 |