Citation: | Wenjin Zhang. ASYMPTOTICS OF THE OPTIMAL VALUE OF SAA WITH AMIS ON MINIMAX STOCHASTIC PROGRAMS[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 1203-1215. doi: 10.11948/20240378 |
The minimax stochastic programming problem is approximated in this paper using the sample average approximation with adaptive multiple importance sampling. We discuss the asymptotics and convergence of its optimal value. The core is the research and utilization of martingale difference sequences. The functional central limit theorem for martingale difference sequences is one of the main tools in studying the asymptotics. Finally, we apply this result to discuss a risk averse optimization problem.
[1] | D. W. K. Andrews, Generic uniform convergence, Econometric Theory, 1992, 8(2), 241–257. doi: 10.1017/S0266466600012780 |
[2] | M. F. Bugallo, V. Elvira, L. Martino, D. Luengo, J. Miguez and P. M. Djuric, Adaptive importance sampling: The past, the present, and the future, IEEE Signal Process. Mag., 2017, 34(4), 60–79. doi: 10.1109/MSP.2017.2699226 |
[3] | J. -M. Corneut, J. -M. Marin, A. Mira and C. P. Robert, Adaptive multiple importance sampling, Scand. J. Stat., 2012, 39(4), 798–812. doi: 10.1111/j.1467-9469.2011.00756.x |
[4] | Y. El-Laham, L. Martino, V. Elvira and M. F. Bugallo, Efficient adaptive multiple importance sampling, 2019 27th European Signal Processing Conference (EUSIPCO), 2019. DOI: 10.23919/EUSIPCO.2019.8902642. |
[5] | C. I. Fábián, C. Wolf, A. Koberstein and L. Suhl, Risk-averse optimization in two-stage stochastic models: Computational aspects and a study, SIAM J. Optim., 2015, 25(1), 28–52. doi: 10.1137/130918216 |
[6] | M. B. Feng, A. Maggiar, J. Staum and A. Wächter, Uniform convergence of sample average approximation with adaptive multiple importance sampling, 2018 Winter Simulation Conference (WSC), 2018. DOI: 10.1109/WSC.2018.8632370. |
[7] | G. Lan and Z. Zhang, Optimal methods for convex risk-averse distributed optimization, SIAM J. Optim., 2023, 33(3), 1518–1557. doi: 10.1137/22M1485309 |
[8] | T. Latunde, J. O. Richard, O. O. Esan and D. D. Dare, Optimal value and post optimal solution in a transportation problem, J. Nonl. Mod. Anal., 2021, 3(3), 335–348. |
[9] | A. Lodi, E. Malaguti, G. Nannicini and D. Thomopulos, Nonlinear chance-constrained problems with applications to hydro scheduling, Math. Program., 2022, 191(1), 405–444. doi: 10.1007/s10107-019-01447-3 |
[10] | D. Luengo, L. Martino, M. Bugallo, V. Elvira and S. Särkkä, A survey of Monte Carlo methods for parameter estimation, EURASIP J. Adv. Signal Process., 2020. DOI: 10.1186/s13634-020-00675-6. |
[11] | A. Maggiar, A. Wächter, I. S. Dolinskaya and J. Staum, A derivative-free trust-region algorithm for the optimization of functions smoothed via Gaussian convolution using adaptive multiple importance sampling, SIAM J. Optim., 2018, 28(2), 1478–1507. doi: 10.1137/15M1031679 |
[12] | J. -M. Marin, P. Pudlo and M. Sedki, Consistency of the adaptive multiple importance sampling, arXiv preprint, 2012. arXiv: 1211.2548. |
[13] | W. Ogryczak and A. Ruszczyński, Dual stochastic dominance and related mean-risk models, SIAM J. Optim., 2002, 13(1), 60–78. doi: 10.1137/S1052623400375075 |
[14] | A. Pichler and R. Schlotter, Martingale characterizations of risk-averse stochastic optimization problems, Math. Program., 2020, 181(2, Ser. B), 377–403. doi: 10.1007/s10107-019-01391-2 |
[15] | R. Retkute, P. Touloupou, M. -G. Basáñez, T. D. Hollingsworth and S. E. F. Spencer, Integrating geostatistical maps and infectious disease transmission models using adaptive multiple importance sampling, Ann. Appl. Stat., 2021, 15(4), 1980–1998. |
[16] | A. Shapiro, Asymptotics of minimax stochastic programs, Statist. Probab. Lett., 2008, 78(2), 150–157. doi: 10.1016/j.spl.2007.05.012 |
[17] | A. Shapiro, Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming, European J. Oper. Res., 2021, 288(1), 1–13. doi: 10.1016/j.ejor.2020.03.065 |
[18] | A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory, SIAM, Philadelphia, 2009. |
[19] | B. Singh and B. Knueven, Lagrangian relaxation based heuristics for a chance constrained optimization model of a hybrid solar-battery storage system, J. Global Optim., 2021, 80(4), 965–989. doi: 10.1007/s10898-021-01041-y |
[20] | W. Zhang and Y. Li, Uniform exponential convergence of SAA with AMIS and asymptotics of its optimal value, Submitted for Publication. |