2025 Volume 15 Issue 2
Article Contents

Wenjin Zhang. ASYMPTOTICS OF THE OPTIMAL VALUE OF SAA WITH AMIS ON MINIMAX STOCHASTIC PROGRAMS[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 1203-1215. doi: 10.11948/20240378
Citation: Wenjin Zhang. ASYMPTOTICS OF THE OPTIMAL VALUE OF SAA WITH AMIS ON MINIMAX STOCHASTIC PROGRAMS[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 1203-1215. doi: 10.11948/20240378

ASYMPTOTICS OF THE OPTIMAL VALUE OF SAA WITH AMIS ON MINIMAX STOCHASTIC PROGRAMS

  • The minimax stochastic programming problem is approximated in this paper using the sample average approximation with adaptive multiple importance sampling. We discuss the asymptotics and convergence of its optimal value. The core is the research and utilization of martingale difference sequences. The functional central limit theorem for martingale difference sequences is one of the main tools in studying the asymptotics. Finally, we apply this result to discuss a risk averse optimization problem.

    MSC: 90C15, 90C47
  • 加载中
  • [1] D. W. K. Andrews, Generic uniform convergence, Econometric Theory, 1992, 8(2), 241–257. doi: 10.1017/S0266466600012780

    CrossRef Google Scholar

    [2] M. F. Bugallo, V. Elvira, L. Martino, D. Luengo, J. Miguez and P. M. Djuric, Adaptive importance sampling: The past, the present, and the future, IEEE Signal Process. Mag., 2017, 34(4), 60–79. doi: 10.1109/MSP.2017.2699226

    CrossRef Google Scholar

    [3] J. -M. Corneut, J. -M. Marin, A. Mira and C. P. Robert, Adaptive multiple importance sampling, Scand. J. Stat., 2012, 39(4), 798–812. doi: 10.1111/j.1467-9469.2011.00756.x

    CrossRef Google Scholar

    [4] Y. El-Laham, L. Martino, V. Elvira and M. F. Bugallo, Efficient adaptive multiple importance sampling, 2019 27th European Signal Processing Conference (EUSIPCO), 2019. DOI: 10.23919/EUSIPCO.2019.8902642.

    CrossRef Google Scholar

    [5] C. I. Fábián, C. Wolf, A. Koberstein and L. Suhl, Risk-averse optimization in two-stage stochastic models: Computational aspects and a study, SIAM J. Optim., 2015, 25(1), 28–52. doi: 10.1137/130918216

    CrossRef Google Scholar

    [6] M. B. Feng, A. Maggiar, J. Staum and A. Wächter, Uniform convergence of sample average approximation with adaptive multiple importance sampling, 2018 Winter Simulation Conference (WSC), 2018. DOI: 10.1109/WSC.2018.8632370.

    CrossRef Google Scholar

    [7] G. Lan and Z. Zhang, Optimal methods for convex risk-averse distributed optimization, SIAM J. Optim., 2023, 33(3), 1518–1557. doi: 10.1137/22M1485309

    CrossRef Google Scholar

    [8] T. Latunde, J. O. Richard, O. O. Esan and D. D. Dare, Optimal value and post optimal solution in a transportation problem, J. Nonl. Mod. Anal., 2021, 3(3), 335–348.

    Google Scholar

    [9] A. Lodi, E. Malaguti, G. Nannicini and D. Thomopulos, Nonlinear chance-constrained problems with applications to hydro scheduling, Math. Program., 2022, 191(1), 405–444. doi: 10.1007/s10107-019-01447-3

    CrossRef Google Scholar

    [10] D. Luengo, L. Martino, M. Bugallo, V. Elvira and S. Särkkä, A survey of Monte Carlo methods for parameter estimation, EURASIP J. Adv. Signal Process., 2020. DOI: 10.1186/s13634-020-00675-6.

    CrossRef Google Scholar

    [11] A. Maggiar, A. Wächter, I. S. Dolinskaya and J. Staum, A derivative-free trust-region algorithm for the optimization of functions smoothed via Gaussian convolution using adaptive multiple importance sampling, SIAM J. Optim., 2018, 28(2), 1478–1507. doi: 10.1137/15M1031679

    CrossRef Google Scholar

    [12] J. -M. Marin, P. Pudlo and M. Sedki, Consistency of the adaptive multiple importance sampling, arXiv preprint, 2012. arXiv: 1211.2548.

    Google Scholar

    [13] W. Ogryczak and A. Ruszczyński, Dual stochastic dominance and related mean-risk models, SIAM J. Optim., 2002, 13(1), 60–78. doi: 10.1137/S1052623400375075

    CrossRef Google Scholar

    [14] A. Pichler and R. Schlotter, Martingale characterizations of risk-averse stochastic optimization problems, Math. Program., 2020, 181(2, Ser. B), 377–403. doi: 10.1007/s10107-019-01391-2

    CrossRef Google Scholar

    [15] R. Retkute, P. Touloupou, M. -G. Basáñez, T. D. Hollingsworth and S. E. F. Spencer, Integrating geostatistical maps and infectious disease transmission models using adaptive multiple importance sampling, Ann. Appl. Stat., 2021, 15(4), 1980–1998.

    Google Scholar

    [16] A. Shapiro, Asymptotics of minimax stochastic programs, Statist. Probab. Lett., 2008, 78(2), 150–157. doi: 10.1016/j.spl.2007.05.012

    CrossRef Google Scholar

    [17] A. Shapiro, Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming, European J. Oper. Res., 2021, 288(1), 1–13. doi: 10.1016/j.ejor.2020.03.065

    CrossRef Google Scholar

    [18] A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory, SIAM, Philadelphia, 2009.

    Google Scholar

    [19] B. Singh and B. Knueven, Lagrangian relaxation based heuristics for a chance constrained optimization model of a hybrid solar-battery storage system, J. Global Optim., 2021, 80(4), 965–989. doi: 10.1007/s10898-021-01041-y

    CrossRef Google Scholar

    [20] W. Zhang and Y. Li, Uniform exponential convergence of SAA with AMIS and asymptotics of its optimal value, Submitted for Publication.

    Google Scholar

Article Metrics

Article views(349) PDF downloads(158) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint