Citation: | Baishun Wang, Jun Zhou. CONFORMABLE EXPONENTIAL DICHOTOMY AND ROUGHNESS OF CONFORMABLE FRACTIONAL DIFFERENTIAL EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 1170-1202. doi: 10.11948/20240357 |
The solutions of traditional fractional differential equations neither satisfy group property nor generate dynamical systems, so hyperbolicity of these equations is difficult to study. Benefitting from the new proposed conformable fractional derivative, we investigate dichotomy of conformable fractional equations, including conformable exponential dichotomy and stability, roughness and nonuniform dichotomy.
[1] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 2015, 279, 57–66. doi: 10.1016/j.cam.2014.10.016 |
[2] | L. Arnold, Random Dynamical Systems, Springer, New York, 1998. |
[3] | J. Bai and X. C. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., 2007, 16(10), 2492–2502. doi: 10.1109/TIP.2007.904971 |
[4] | E. Balci, I. Öztürk and S. Kartal, Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative, Chao. Soliton. Fract., 2019, 123, 43–51. doi: 10.1016/j.chaos.2019.03.032 |
[5] | D. Baleanu, G. Wu and S. Zeng, Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations, Chao. Soliton. Fract., 2017, 102, 99–105. doi: 10.1016/j.chaos.2017.02.007 |
[6] | L. Barreira, D. Dragičcević and C. Valls, Admissibility and Hyperbolicity, Springer Briefs in Math., Springer, Cham, 2018. |
[7] | L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Lecture Notes in Math., Springer-Verlag, Berlin, Heidelberg, 2008. |
[8] | L. Barreira and C. Valls, Polynomial growth rates, Nonlinear Anal., 2009, 71(11), 5208–5219. doi: 10.1016/j.na.2009.04.005 |
[9] | L. Barreira and C. Valls, Ordinary Differential Equations: Qualitative Theory, Am. Math. Soc., Providence, 2010. |
[10] | F. Battelli and K. J. Palmer, Strongly exponentially separated linear systems, J. Dyn. Differ. Equ., 2019, 31, 573–600. doi: 10.1007/s10884-018-9695-6 |
[11] | A. Cartea and D. D. Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Phys. A: Stat. Mech. Appl., 2007, 374(2), 749–763. doi: 10.1016/j.physa.2006.08.071 |
[12] | C. Chicone and Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Math. Surv. Monogr., Amer. Math. Soc., Providence, RI, 1999. |
[13] | S. N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces, J. Differ. Equ., 1995, 120(2), 429–477. doi: 10.1006/jdeq.1995.1117 |
[14] | N. D. Cong, Topological Dynamics of Random Dynamical Systems, Clarendon, Oxford, 1997. |
[15] | W. A. Coppel, Dichotomies and reducibility, J. Differ. Equ., 1967, 3(4), 500–521. doi: 10.1016/0022-0396(67)90014-9 |
[16] | W. A. Coppel, Dichotomies in Stability Theory, Lecture Notes in Math., Springer-Verlag, Berlin, New York, 1978. |
[17] | V. Daftardar-Gejji, Fractional Calculus and Fractional Differential Equations, Springer, Singapore, 2019. |
[18] | K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever, Nonlinear Dyn., 2013, 71, 613–619. doi: 10.1007/s11071-012-0475-2 |
[19] | D. Dragičcević, W. Zhang and L. Zhou, Admissibility and nonuniform exponential dichotomies, J. Differ. Equ., 2022, 326, 201–226. doi: 10.1016/j.jde.2022.04.014 |
[20] | V. M. Gundlach, Random homoclinic orbits, Random Comput. Dyn., 1995, 3, 1–33. |
[21] | B. Guo, X. Pu and F. Huang, Fractional Partial Differential Equations and their Numerical Solutions, Chin. Sci. Publ. & Media Ltd., Beijing, 2011. |
[22] | J. K. Hale, Ordinary Differential Equations, John Wiley & Sons, New York, 1969. |
[23] | B. T. Jin, Fractional Differential Equations, Appl. Math. Sci., Springer, Berlin, New York, 2021. |
[24] | R. Khalil, M. A. Horani, A. Yousef, et al., A new definition of fractional derivative, J. Comput. Appl. Math., 2014, 264, 65–70. doi: 10.1016/j.cam.2014.01.002 |
[25] | T. U. Khan and M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 2019, 346, 378–389. doi: 10.1016/j.cam.2018.07.018 |
[26] | A. A. Kilbas, M. H. Srivastava and J. Trujillo, Theory and Application of Fractional Difrential Equations, North-Holland, Amsterdam, 2006. |
[27] | T. Li, Die stabilitätsfrage bei differenzengleichungen, Acta Math., 1934, 63, 99–141. doi: 10.1007/BF02547352 |
[28] | Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space, Mem. Amer. Math. Soc., 2010, 967, 1–183. |
[29] | J. Massera and J. Schäffer, Linear differential equations and functional analysis, I, Ann. Math., 1958, 67(3), 517–573. doi: 10.2307/1969871 |
[30] | J. Massera and J. Schäffer, Linear differential equations and functional analysis, IV, Math. Ann., 1960, 139, 287–342. doi: 10.1007/BF01352264 |
[31] | R. Naulin and M. Pinto, Roughness of (h, k)-dichotomies, J. Differ. Equ., 1995, 118(1), 20–35. doi: 10.1006/jdeq.1995.1065 |
[32] | R. Naulin and M. Pinto, Admissible perturbations of exponential dichotomy roughness, Nonlinear Anal., 1998, 31(5–6), 559–571. doi: 10.1016/S0362-546X(97)00423-9 |
[33] | G. Pecelli, Dichotomies for linear functional-differential equations, J. Differ. Equ., 1971, 9(3), 555–579. doi: 10.1016/0022-0396(71)90024-6 |
[34] | O. Perron, Die stabilitätsfrage bei differentialgleichungen, Math. Z., 1930, 32, 703–728. doi: 10.1007/BF01194662 |
[35] | V. A. Pliss and G. R. Sell, Robustness of exponential dichotomies in infinite-dimensional dynamical systems, J. Dynam. Differ. Equ., 1999, 11, 471–513. doi: 10.1023/A:1021913903923 |
[36] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, 1999. |
[37] | L. H. Popescu, Exponential dichotomy roughness on Banach spaces, J. Math. Anal. Appl., 2006, 314(2), 436–454. doi: 10.1016/j.jmaa.2005.04.011 |
[38] | W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York, 1976. |
[39] | A. L. Sasu, Exponential dichotomy and dichotomy radius for difference equations, J. Math. Anal. Appl., 2008, 344(2), 906–920. doi: 10.1016/j.jmaa.2008.03.019 |
[40] | J. J. Schäffer, Linear differential equations and functional analysis, VⅢ, Math. Ann., 1963, 151, 57–100. doi: 10.1007/BF01343325 |
[41] | L. Song, S. Xu and J. Yang, Dynamical models of happiness with fractional order, Commun. Nonlinear Sci. Numer. Simul., 2010, 15(3), 616–628. doi: 10.1016/j.cnsns.2009.04.029 |
[42] | P. Sopasakis, H. Sarimveis and P. Macheras, Fractional calculus in pharmacokinetics, J. Pharmacokinet. Pharmacodyn., 2018, 45, 107–125. doi: 10.1007/s10928-017-9547-8 |
[43] | A. Souahi, A. B. Makhlouf and M. A. Hammami, Stability analysis of conformable fractional-order nonlinear systems, Indag. Math., 2017, 28(6), 1265–1274. doi: 10.1016/j.indag.2017.09.009 |
[44] | B. J. West, Fractional calculus in bioengineering, J. Stat. Phys., 2007, 126(6), 1285–1286. doi: 10.1007/s10955-007-9294-0 |
[45] | W. Z. Wu, L. Zeng, C. Liu, et al., A time power-based grey model with conformable fractional derivative and its applications, Chao. Soliton. Fract., 2022, 155, 111657. doi: 10.1016/j.chaos.2021.111657 |
[46] | W. L. Xie, C. X. Liu, W. Z. Wu, et al., Continuous grey model with conformable fractional derivative, Chao. Soliton. Fract., 2020, 139, 110285. doi: 10.1016/j.chaos.2020.110285 |
[47] | W. Zhang, A. Capilnasiue, G. Sommer, et al., An efficient and accurate method for modeling nonlinear fractional viscoelastic biomaterials, Comput. Meth. Appl. Mech. Engine., 2020, 362, 112834. doi: 10.1016/j.cma.2020.112834 |
[48] | L. Zhou, K. Lu and W. Zhang, Roughness of tempered exponential dichotomies for infinite-dimensional random difference equations, J. Differ. Equ., 2013, 254(9), 4024–4046. doi: 10.1016/j.jde.2013.02.007 |
[49] | L. Zhou and W. Zhang, Admissibility and roughness of nonuniform exponential dichotomies for difference equations, J. Funct. Anal., 2016, 271(5), 1087–1129. doi: 10.1016/j.jfa.2016.06.005 |
[50] | Y. Zhou, J. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, 2nd Edi., World Scientific, Singapore, 2016. |