Citation: | Rafael Oliveira de Jesus, Carlos Alberto Raposo, Joilson Oliveira Ribeiro, Octavio Vera Villagran. TIMOSHENKO SYSTEM WITH INTERNAL DISSIPATION OF FRACTIONAL DERIVATIVE TYPE[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 1146-1169. doi: 10.11948/20240289 |
This manuscript deals with the well-posedness and asymptotic behavior of the Timoshenko system with internal dissipation of fractional derivative type. We use semigroup theory. The existence and uniqueness of the solution are obtained by applying the Lumer-Phillips Theorem. We present two results for the asymptotic behavior: strong stability of the $ C_{0} $-semigroup associated with the system using the Arendt-Batty and Lyubich-Vũ's general criterion and the polynomial stability applying the Borichev-Tomilov's theorem. This results expand the understanding of the asymptotic behavior of Timoshenko systems with fractional internal dissipation, providing clear criteria for both strong and polynomial stability.
[1] | A. Adnane, A. Benaissa and K. Benomar, Uniform stabilization for a Timoshenko beam system with delays in fractional order internal dampings, SeMA J., 2023, 80, 283–302. doi: 10.1007/s40324-022-00286-1 |
[2] | M. Akil, Y. Chitour, M. Ghader and A. Wehbe, Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary, Asymptot. Anal., 2020, 119(3–4), 221–280. |
[3] | A. Alshabanat, M. Jleli, S. Kumar and B. Samet, Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits, Front. Phys., 2020, 8, 1–10. doi: 10.3389/fphy.2020.00001 |
[4] | K. Ammari, F. Hassine and L. Robbiano, Stabilization for Some Fractional-Evolution Systems, Springer, Switzerland, 2022. |
[5] | W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Am. Math. Soc., 1988, 306(2), 837–852. doi: 10.1090/S0002-9947-1988-0933321-3 |
[6] | A. Benaissa and S. Benazzouz, Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary feedback of fractional derivative type, Z. Angew. Math. Phys., 2017, 68, 1–38. doi: 10.1007/s00033-016-0745-9 |
[7] | A. Borichev and Y. Tomilov, Optimal polynomial decay of function and operator semigroups, Math. Ann., 2010, 347, 455–478. doi: 10.1007/s00208-009-0439-0 |
[8] | A. Boudaoud and A. Benaissa, Stabilization of a wave equation with a general internal control of diffusive type, Discontinuity, Nonlinearity, and Complexity, (2023), 12(4), 879–891. doi: 10.5890/DNC.2023.12.012 |
[9] | H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. |
[10] | M. Caputo, Linear models of dissipation whose Q is almost frequency independent - Ⅱ, Geophys. J. Int., 1967, 13(5), 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x |
[11] | M. Caputo, Elasticitá e Dissipazione, Zanichelli, Bologna, 1969. |
[12] | M. Caputo and F. Mainardi, Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento, 1971, 1, 161–198. doi: 10.1007/BF02820620 |
[13] | J. Choi and R. MacCamy, Fractional order Volterra equations with applications to elasticity, J. Math. Anal. Appl., 1989, 139(2), 448–464. doi: 10.1016/0022-247X(89)90120-0 |
[14] | S. Das, Functional Fractional Calculus for System Identification and Control, Springer Science, Business Media, 2011. |
[15] | I. Elishakoff, An equation both more consistent and simpler than the Bresse-Timoshenko equation, In: Gilat, R., Banks-Sills, L. (eds. ) Advanced in Mathematical Modeling and Experimental Methods for Materials and Structures, Berlin, Springer, 2010, 249–254. |
[16] | I. Elishakoff, Stepan Prokofievich Timoshenko and America, ZAMM - Z. Angew. Math. Mech., 2019, 99, 1–18. |
[17] | I. Elishakoff, Who developed the so-called Timoshenko beam theory?, Math. Mech. Solids., 2020, 25, 97–116. doi: 10.1177/1081286519856931 |
[18] | S. A. Faghidian and I. Elishakoff, The tale of shear coefficients in Timoshenko-Ehrenfest beam theory: 130 years of progress, Meccanica, 2022, 58, 97–108. |
[19] | L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 1978, 236, 385–394. doi: 10.1090/S0002-9947-1978-0461206-1 |
[20] | F. L. Huang, Characteristic conditions for exponential stability of linear dynamical system in Hilbert spaces, Ann. Differential Equations, 1985, 1, 43–56. |
[21] | M. Kerdache, M. Kesri and A. Benaissa, Fractional boundary stabilization for a coupled system of wave equations, Ann. Univ. Ferrara Sez. Ⅶ Sci. Mat., 2021, 67(1), 121–148. doi: 10.1007/s11565-021-00362-w |
[22] | I. Y. Lyubich and Q. P. Vu, Asymptotic stability of linear differential equations in Banach spaces, Stud. Math., 1988, 88(1), 37–42. doi: 10.4064/sm-88-1-37-42 |
[23] | R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 2004, 32(1), 1–104. doi: 10.1615/CritRevBiomedEng.v32.10 |
[24] | A. I. Manevich and Z. Kolakowski, Free and forced oscillations of Timoshenko beam made of viscoelastic material, J. Theor. Appl. Mech., 2011, 49, 3–16. |
[25] | V. V. Nesterenko, A theory for transverse vibrations of the Timoshenko beam, J. Appl. Maths. Mechs., 1993, 51, 669–677. |
[26] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. |
[27] | I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, Academic Press, Cambridge, 1998. |
[28] | J. Prüss, On the spectrum of C0-semigroups, Trans. , Amer. Math. Soc., 1984, 284(2), 847–857. |
[29] | C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings, Appl. Math. Lett., 2005, 18, 535–541. |
[30] | S. Samko, A. Kilbas and O. Marichev, Integral and Derivatives of Fractional Order, Gordon Breach, New York, 1993. |
[31] | A. S. Shaikh, I. N. Shaikh and K. S. Nisar, A mathematical model of COVID-19 using fractional derivative: Outbreak in India with dynamics of transmission and control, Adv. Differ. Equ., 2020, 373, 1–19. |
[32] | A. Soufyane, Stabilisation de la poutre de Timoshenko, C. R. Acad. Sci., 1999, 328, 731–734. |
[33] | H. G. Sun, Y. Z. D. Baleanu, W. Chen and Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 2018, 64, 213–231. |
[34] | V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Berlin, 2011. |
[35] | S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibration of prismatic bars, Phil. Mag., 1921, 41, 744–746. |
[36] | O. Zarraga, I. Sarría, J. García-Barruetabeña and F. Cortés, An analysis of the dynamical behaviour of systems with fractional damping for mechanical engineering applications, Symmetry, 2019, 1–15. |