2025 Volume 15 Issue 2
Article Contents

Rafael Oliveira de Jesus, Carlos Alberto Raposo, Joilson Oliveira Ribeiro, Octavio Vera Villagran. TIMOSHENKO SYSTEM WITH INTERNAL DISSIPATION OF FRACTIONAL DERIVATIVE TYPE[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 1146-1169. doi: 10.11948/20240289
Citation: Rafael Oliveira de Jesus, Carlos Alberto Raposo, Joilson Oliveira Ribeiro, Octavio Vera Villagran. TIMOSHENKO SYSTEM WITH INTERNAL DISSIPATION OF FRACTIONAL DERIVATIVE TYPE[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 1146-1169. doi: 10.11948/20240289

TIMOSHENKO SYSTEM WITH INTERNAL DISSIPATION OF FRACTIONAL DERIVATIVE TYPE

  • This manuscript deals with the well-posedness and asymptotic behavior of the Timoshenko system with internal dissipation of fractional derivative type. We use semigroup theory. The existence and uniqueness of the solution are obtained by applying the Lumer-Phillips Theorem. We present two results for the asymptotic behavior: strong stability of the $ C_{0} $-semigroup associated with the system using the Arendt-Batty and Lyubich-Vũ's general criterion and the polynomial stability applying the Borichev-Tomilov's theorem. This results expand the understanding of the asymptotic behavior of Timoshenko systems with fractional internal dissipation, providing clear criteria for both strong and polynomial stability.

    MSC: 26A33, 35Q70, 35A01, 35B40
  • 加载中
  • [1] A. Adnane, A. Benaissa and K. Benomar, Uniform stabilization for a Timoshenko beam system with delays in fractional order internal dampings, SeMA J., 2023, 80, 283–302. doi: 10.1007/s40324-022-00286-1

    CrossRef Google Scholar

    [2] M. Akil, Y. Chitour, M. Ghader and A. Wehbe, Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary, Asymptot. Anal., 2020, 119(3–4), 221–280.

    Google Scholar

    [3] A. Alshabanat, M. Jleli, S. Kumar and B. Samet, Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits, Front. Phys., 2020, 8, 1–10. doi: 10.3389/fphy.2020.00001

    CrossRef Google Scholar

    [4] K. Ammari, F. Hassine and L. Robbiano, Stabilization for Some Fractional-Evolution Systems, Springer, Switzerland, 2022.

    Google Scholar

    [5] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Am. Math. Soc., 1988, 306(2), 837–852. doi: 10.1090/S0002-9947-1988-0933321-3

    CrossRef Google Scholar

    [6] A. Benaissa and S. Benazzouz, Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary feedback of fractional derivative type, Z. Angew. Math. Phys., 2017, 68, 1–38. doi: 10.1007/s00033-016-0745-9

    CrossRef Google Scholar

    [7] A. Borichev and Y. Tomilov, Optimal polynomial decay of function and operator semigroups, Math. Ann., 2010, 347, 455–478. doi: 10.1007/s00208-009-0439-0

    CrossRef Google Scholar

    [8] A. Boudaoud and A. Benaissa, Stabilization of a wave equation with a general internal control of diffusive type, Discontinuity, Nonlinearity, and Complexity, (2023), 12(4), 879–891. doi: 10.5890/DNC.2023.12.012

    CrossRef Google Scholar

    [9] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.

    Google Scholar

    [10] M. Caputo, Linear models of dissipation whose Q is almost frequency independent - Ⅱ, Geophys. J. Int., 1967, 13(5), 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x

    CrossRef Google Scholar

    [11] M. Caputo, Elasticitá e Dissipazione, Zanichelli, Bologna, 1969.

    Google Scholar

    [12] M. Caputo and F. Mainardi, Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento, 1971, 1, 161–198. doi: 10.1007/BF02820620

    CrossRef Google Scholar

    [13] J. Choi and R. MacCamy, Fractional order Volterra equations with applications to elasticity, J. Math. Anal. Appl., 1989, 139(2), 448–464. doi: 10.1016/0022-247X(89)90120-0

    CrossRef Google Scholar

    [14] S. Das, Functional Fractional Calculus for System Identification and Control, Springer Science, Business Media, 2011.

    Google Scholar

    [15] I. Elishakoff, An equation both more consistent and simpler than the Bresse-Timoshenko equation, In: Gilat, R., Banks-Sills, L. (eds. ) Advanced in Mathematical Modeling and Experimental Methods for Materials and Structures, Berlin, Springer, 2010, 249–254.

    Google Scholar

    [16] I. Elishakoff, Stepan Prokofievich Timoshenko and America, ZAMM - Z. Angew. Math. Mech., 2019, 99, 1–18.

    Google Scholar

    [17] I. Elishakoff, Who developed the so-called Timoshenko beam theory?, Math. Mech. Solids., 2020, 25, 97–116. doi: 10.1177/1081286519856931

    CrossRef Google Scholar

    [18] S. A. Faghidian and I. Elishakoff, The tale of shear coefficients in Timoshenko-Ehrenfest beam theory: 130 years of progress, Meccanica, 2022, 58, 97–108.

    Google Scholar

    [19] L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 1978, 236, 385–394. doi: 10.1090/S0002-9947-1978-0461206-1

    CrossRef Google Scholar

    [20] F. L. Huang, Characteristic conditions for exponential stability of linear dynamical system in Hilbert spaces, Ann. Differential Equations, 1985, 1, 43–56.

    Google Scholar

    [21] M. Kerdache, M. Kesri and A. Benaissa, Fractional boundary stabilization for a coupled system of wave equations, Ann. Univ. Ferrara Sez. Ⅶ Sci. Mat., 2021, 67(1), 121–148. doi: 10.1007/s11565-021-00362-w

    CrossRef Google Scholar

    [22] I. Y. Lyubich and Q. P. Vu, Asymptotic stability of linear differential equations in Banach spaces, Stud. Math., 1988, 88(1), 37–42. doi: 10.4064/sm-88-1-37-42

    CrossRef Google Scholar

    [23] R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 2004, 32(1), 1–104. doi: 10.1615/CritRevBiomedEng.v32.10

    CrossRef Google Scholar

    [24] A. I. Manevich and Z. Kolakowski, Free and forced oscillations of Timoshenko beam made of viscoelastic material, J. Theor. Appl. Mech., 2011, 49, 3–16.

    Google Scholar

    [25] V. V. Nesterenko, A theory for transverse vibrations of the Timoshenko beam, J. Appl. Maths. Mechs., 1993, 51, 669–677.

    Google Scholar

    [26] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

    Google Scholar

    [27] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, Academic Press, Cambridge, 1998.

    Google Scholar

    [28] J. Prüss, On the spectrum of C0-semigroups, Trans. , Amer. Math. Soc., 1984, 284(2), 847–857.

    Google Scholar

    [29] C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings, Appl. Math. Lett., 2005, 18, 535–541.

    Google Scholar

    [30] S. Samko, A. Kilbas and O. Marichev, Integral and Derivatives of Fractional Order, Gordon Breach, New York, 1993.

    Google Scholar

    [31] A. S. Shaikh, I. N. Shaikh and K. S. Nisar, A mathematical model of COVID-19 using fractional derivative: Outbreak in India with dynamics of transmission and control, Adv. Differ. Equ., 2020, 373, 1–19.

    Google Scholar

    [32] A. Soufyane, Stabilisation de la poutre de Timoshenko, C. R. Acad. Sci., 1999, 328, 731–734.

    Google Scholar

    [33] H. G. Sun, Y. Z. D. Baleanu, W. Chen and Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 2018, 64, 213–231.

    Google Scholar

    [34] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Berlin, 2011.

    Google Scholar

    [35] S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibration of prismatic bars, Phil. Mag., 1921, 41, 744–746.

    Google Scholar

    [36] O. Zarraga, I. Sarría, J. García-Barruetabeña and F. Cortés, An analysis of the dynamical behaviour of systems with fractional damping for mechanical engineering applications, Symmetry, 2019, 1–15.

    Google Scholar

Article Metrics

Article views(401) PDF downloads(226) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint