2025 Volume 15 Issue 2
Article Contents

Yi Gong. A HERMITE FINITE ELEMENT METHOD FOR THE VIBRATION PROBLEM OF THE RAYLEIGH-BISHOP BEAM[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 1134-1145. doi: 10.11948/20240285
Citation: Yi Gong. A HERMITE FINITE ELEMENT METHOD FOR THE VIBRATION PROBLEM OF THE RAYLEIGH-BISHOP BEAM[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 1134-1145. doi: 10.11948/20240285

A HERMITE FINITE ELEMENT METHOD FOR THE VIBRATION PROBLEM OF THE RAYLEIGH-BISHOP BEAM

  • In this paper, a Hermite finite element method is proposed for the Rayleigh-Bishop equation which describes the vibration problem of the Rayleigh-Bishop beam. We first present the semi-discrete Galerkin finite element form for the Rayleigh-Bishop equation. Then by means of the cubic Hermite element, a full-discrete finite element scheme is established. Furthermore, a numerical algorithm based on the Hermite finite element method is proposed to solve the fourth-order Rayleigh-Bishop equation. Finally, a numerical example is given to illustrate the effectiveness of the proposed method. The Hermite finite element method is potentially applied to other vibration problems.

    MSC: 35L82, 65N30
  • 加载中
  • [1] L. N. Bondar and G. V. Demidenko, Solvability of the Cauchy problem for a pseudohyperbolic system, Complex Variables and Elliptic Equations, 2021, 66, 1084–1099. doi: 10.1080/17476933.2020.1829606

    CrossRef Google Scholar

    [2] E. Carrera and D. Scano, Finite elements based on Jacobi shape functions for the free vibration analysis of beams, plates, and shells, Mechanics of Advanced Materials and Structures, 2024, 31, 4–12. doi: 10.1080/15376494.2023.2219438

    CrossRef Google Scholar

    [3] C. Chazal and R. M. Pitti, Integral approach for time dependent materials using finite element method, Journal of Theoretical and Applied Mechanics, 2011, 49, 1029–1048.

    Google Scholar

    [4] Z. Chen, Z. Yang, N. Guo and G. Zhang, An energy finite element method for high frequency vibration analysis of beams with axial force, Applied Mathematical Modelling, 2018, 61, 521–539. doi: 10.1016/j.apm.2018.04.016

    CrossRef Google Scholar

    [5] A. Dabbagh, A. Rastgoo and F. Ebrahimi, Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory, Thin-Walled Structures, 2019, 140, 304–317. doi: 10.1016/j.tws.2019.03.031

    CrossRef Google Scholar

    [6] B. Deka, P. Roy and N. Kumar, Weak Galerkin finite element methods combined with Crank-Nicolson scheme for parabolic interface problems, Journal of Applied Analysis and Computation, 2020, 10, 1433–1442.

    Google Scholar

    [7] G. V. Demidenko, Solvability conditions of the Cauchy problem for pseudohyperbolic equations, Siberian Mathematical Journal, 2015, 56, 1028–1041. doi: 10.1134/S0037446615060075

    CrossRef Google Scholar

    [8] G. V. Demidenko and S. V. Upsenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, New York, Marcel Dekker, 2003.

    Google Scholar

    [9] H. Elhuni and D. Basu, Dynamic soil structure interaction model for beams on viscoelastic foundations subjected to oscillatory and moving loads, Computers and Geotechnics, 2019, 115, 103157. doi: 10.1016/j.compgeo.2019.103157

    CrossRef Google Scholar

    [10] I. A. Fedotov, A. D. Polyanin, M. Y. Shatalov and H. M. Tenkam, Longitudinal vibrations of a Rayleigh-Bishop rod, Doklady Physics, 2010, 55, 609–614. doi: 10.1134/S1028335810120062

    CrossRef Google Scholar

    [11] A. C. Galucio, J. F. Deü and R. Ohayon, Finite element formulation of viscoelastic sandwich beams using fractional derivative operators, Computational Mechanics, 2004, 33, 282–291. doi: 10.1007/s00466-003-0529-x

    CrossRef Google Scholar

    [12] H. Guo, X. Cao, Z. Liang, S. Lin, H. Zheng and H. Cui, Hermitian numerical manifold method for large deflection of irregular Föppl-von Kármán plates, Engineering Analysis with Boundary Elements, 2023, 153, 25–38. doi: 10.1016/j.enganabound.2023.05.008

    CrossRef Google Scholar

    [13] H. Guo, S. Lin and H. Zheng, GMLS-based numerical manifold method in mechanical analysis of thin plates with complicated shape or cutouts, Engineering Analysis with Boundary Elements, 2023, 151, 597–623. doi: 10.1016/j.enganabound.2023.03.028

    CrossRef Google Scholar

    [14] H. Guo and H. Rui, Least-squares Galerkin procedures for pseudohyperbolic equations, Applied Mathematics and Computation, 2007, 189, 425–439. doi: 10.1016/j.amc.2006.11.094

    CrossRef Google Scholar

    [15] F. Igor, S. Michael and M. Julian, Hyperbolic and pseudo-hyperbolic equations in the theory of vibration, Acta Mechanica, 2016, 227, 3315–3324. doi: 10.1007/s00707-015-1537-6

    CrossRef Google Scholar

    [16] K. Koutoati, F. Mohri and E. Carrera, A finite element approach for the static and vibration analyses of functionally graded material viscoelastic sandwich beams with nonlinear material behavior, Composite Structures, 2021, 274, 114315. doi: 10.1016/j.compstruct.2021.114315

    CrossRef Google Scholar

    [17] H. Liu and P. Huang, A two-grid decoupled finite element method for the stationary closed-loop geothermal system, Journal of Applied Analysis and Computation, 2023, 13, 1837–1851.

    Google Scholar

    [18] Y. Liu and H. Li, H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations, Applied Mathematics and Computation, 2009, 212, 446–457. doi: 10.1016/j.amc.2009.02.039

    CrossRef Google Scholar

    [19] J. Marais, I. Fedotov and M. Shatalov, Longitudinal vibrations of a cylindrical rod based on the Rayleigh-Bishop theory, Afrika Matematika, 2015, 26, 1549–1560. doi: 10.1007/s13370-014-0286-3

    CrossRef Google Scholar

    [20] J. Niiranen, V. Balobanov, J. Kiendl and S. Hosseini, Variational formulations, model comparisons and numerical methods for Euler-Bernoulli micro-and nano-beam models, Mathematics and Mechanics of Solids, 2019, 24, 312–335. doi: 10.1177/1081286517739669

    CrossRef Google Scholar

    [21] F. P. Pinnola, M. S. Vaccaro, R. Barretta and F. M. de Sciarra, Finite element method for stress-driven nonlocal beams, Engineering Analysis with Boundary Elements, 2022, 134, 22–34. doi: 10.1016/j.enganabound.2021.09.009

    CrossRef Google Scholar

    [22] E. D. Sánchez, L. G. Nallim, F. J. Bellomo and S. H. Oller, Generalized viscoelastic model for laminated beams using hierarchical finite elements, Composite Structures, 2022, 235, 111794.

    Google Scholar

    [23] M. Shatalov, J. Marais, I. Fedotov, M. D. Tenkam and M. Schmidt, Longitudinal vibration of isotropic solid rods: From classical to modern theories, Advances in Computer Science and Engineering, 2011, 212, 187–214.

    Google Scholar

    [24] S. R. Singiresu, Vibration of Continuous Systems, Hoboken, NJ, USA, John Wiley & Sons, 2019.

    Google Scholar

    [25] Y. Tang and Z. Yin, Hermite finite element method for a class of viscoelastic beam vibration problem, Engineering, 2021, 13, 463–471. doi: 10.4236/eng.2021.138033

    CrossRef Google Scholar

    [26] R. L. Taylor, F. C. Filippou, A. Saritas and F. Auricchio, A mixed finite element method for beam and frame problems, Computational Mechanics, 2003, 31, 192–203. doi: 10.1007/s00466-003-0410-y

    CrossRef Google Scholar

    [27] Y. Wang, H. Ding and L. Q. Chen, Vibration of axially moving hyperelastic beam with finite deformation, Applied Mathematical Modelling, 2019, 71, 269–285. doi: 10.1016/j.apm.2019.02.011

    CrossRef Google Scholar

    [28] C. Yu, J. Zhang, Y. Chen, Y. Feng and A. Yang, A numerical method for solving fractional-order viscoelastic Euler-Bernoulli beams, Chaos, Solitons & Fractals, 2019, 128, 275–279.

    Google Scholar

Figures(5)  /  Tables(2)

Article Metrics

Article views(390) PDF downloads(188) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint