Citation: | Zhongyuan Wang, Wei Zhang, Jinbo Ni. VARIATIONAL APPROACH TO MIXED BOUNDARY VALUE PROBLEMS OF FRACTIONAL STURM-LIOUVILLE DIFFERENTIAL EQUATIONS WITH INSTANTANEOUS AND NON-INSTANTANEOUS IMPULSES[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 1113-1133. doi: 10.11948/20240278 |
This paper investigates a class of fractional Sturm-Liouville differential equations with mixed boundary conditions, which are subjected to parameter and impulsive perturbations (including instantaneous and non-instantaneous impulses). By employing the variational methods and critical point theorems, we derive several criteria that guarantee the existence of at least one and two classical solutions, respectively, when the parameters fall within different intervals. Furthermore, we provide an example to demonstrate the effectiveness of our main results.
[1] | G. A. Afrouzi and A. Hadjian, A variational approach for boundary value problems for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 2018, 21(6), 1565–1584. doi: 10.1515/fca-2018-0082 |
[2] | R. Agarwal, S. Hristova and D. O'Regan, Non-Instantaneous Impulses in Differential Equations, Springer, Cham, 2017. |
[3] | R. Almeida, Fractional differential equations with mixed boundary conditions, Bull. Malays. Math. Sci. Soc., 2019, 42(4), 1687–1697. doi: 10.1007/s40840-017-0569-6 |
[4] | R. Bourguiba, A. Cabada and O. K. Wanassi, Existence of solutions of discrete fractional problem coupled to mixed fractional boundary conditions, Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A-Mat., 2022, 116(4), Paper No. 175, 15 pp. |
[5] | J. Carmona, E. Colorado, T. Leonori and A. Ortega, Semilinear fractional elliptic problems with mixed Dirichlet-Neumann boundary conditions, Fract. Calc. Appl. Anal., 2020, 23(4), 1208–1239. doi: 10.1515/fca-2020-0061 |
[6] | D. G. Duffy, Mixed Boundary Value Problems, Chapman & Hall/CRC, Boca Raton, 2008. |
[7] | H. A. Fallahgoul, S. M. Focardi and F. J. Fabozzi, Fractional Calculus and Fractional Processes with Applications to Financial Economics, Elsevier/Academic Press, London, 2017. |
[8] | D. Gao and J. Li, New results for impulsive fractional differential equations through variational methods, Math. Nachr., 2021, 294(10), 1866–1878. doi: 10.1002/mana.201800383 |
[9] | S. Heidarkhani and A. Salari, Nontrivial solutions for impulsive fractional differential systems through variational methods, Math. Methods Appl. Sci., 2020, 43(10), 6529–6541. doi: 10.1002/mma.6396 |
[10] | E. Hernández and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 2013, 141(5), 1641–1649. |
[11] | R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. |
[12] | V. Hutson and J. S. Pym, Applications of Functional Analysis and Operator Theory, Academic Press, Inc., New York-London, 1980. |
[13] | C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado and J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul., 2017, 51, 141–159. doi: 10.1016/j.cnsns.2017.04.001 |
[14] | F. Jiao and Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 2011, 62(3), 1181–1199. doi: 10.1016/j.camwa.2011.03.086 |
[15] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. |
[16] | T. Kim and D. Cao, Equations of Motion for Incompressible Viscous Fluids: With Mixed Boundary Conditions, Birkhäuser/Springer, Cham, 2021. |
[17] | C. E. T. Ledesma and N. Nyamoradi, (k, ψ)-Hilfer impulsive variational problem, Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A-Mat., 2023, 117(1), Paper No. 42, 34 pp. |
[18] | D. Li, F. Chen, Y. Wu and Y. An, Variational formulation for nonlinear impulsive fractional differential equations with (p, q)-Laplacian operator, Math. Methods Appl. Sci., 2022, 45(1), 515–531. doi: 10.1002/mma.7791 |
[19] | Y. Liu, A new method for converting boundary value problems for impulsive fractional differential equations to integral equations and its applications, Adv. Nonlinear Anal., 2019, 8(1), 386–454. |
[20] | B. Łupiúska, Existence of solutions to nonlinear Katugampola fractional differential equations with mixed fractional boundary conditions, Math. Methods Appl. Sci., 2023, 46(11), 12007–12017. doi: 10.1002/mma.8894 |
[21] | A. I. N. Malti, M. Benchohra, J. R. Graef and J. E. Lazreg, Impulsive boundary value problems for nonlinear implicit Caputo-exponential type fractional differential equations, Electron. J. Qual. Theory Differ. Equ., 2020. DOI: 10.14232/ejqtde.2020.1.78. |
[22] | J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989. |
[23] | D. Min and F. Chen, Variational methods to the p-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem, Fract. Calc. Appl. Anal., 2021, 24(4), 1069–1093. doi: 10.1515/fca-2021-0046 |
[24] | N. Nyamoradi, Existence and multiplicity of solutions for impulsive fractional differential equations, Mediterr. J. Math., 2017, 14(2), Paper No. 85, 17 pp. |
[25] | N. Nyamoradi and S. Tersian, Existence of solutions for nonlinear fractional order p-Laplacian differential equations via critical point theory, Fract. Calc. Appl. Anal., 2019, 22(4), 945–967. doi: 10.1515/fca-2019-0051 |
[26] | R. Rizwan and A. Zada, Nonlinear impulsive Langevin equation with mixed derivatives, Math. Methods Appl. Sci., 2020, 43(1), 427–442. doi: 10.1002/mma.5902 |
[27] | R. Rodríguez-López and S. Tersian, Multiple solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 2014, 17(4), 1016–1038. doi: 10.2478/s13540-014-0212-2 |
[28] | A. M. Samoĭlenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. |
[29] | Y. Tian and J. J. Nieto, The applications of critical-point theory to discontinuous fractional-order differential equations, Proc. Edinb. Math. Soc., 2017, 60(4), 1021–1051. doi: 10.1017/S001309151600050X |
[30] | E. Zeidler, Nonlinear Functional Analysis and its Applications. Ⅲ. Variational Methods and Optimization, Springer-Verlag, New York, 1985. |
[31] | W. Zhang and J. Ni, Study on a new p-Laplacian fractional differential model generated by instantaneous and non-instantaneous impulsive effects, Chaos Solitons Fractals, 2023, 168, Paper No. 113143, 7 pp. |