2025 Volume 15 Issue 2
Article Contents

Zhongyuan Wang, Wei Zhang, Jinbo Ni. VARIATIONAL APPROACH TO MIXED BOUNDARY VALUE PROBLEMS OF FRACTIONAL STURM-LIOUVILLE DIFFERENTIAL EQUATIONS WITH INSTANTANEOUS AND NON-INSTANTANEOUS IMPULSES[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 1113-1133. doi: 10.11948/20240278
Citation: Zhongyuan Wang, Wei Zhang, Jinbo Ni. VARIATIONAL APPROACH TO MIXED BOUNDARY VALUE PROBLEMS OF FRACTIONAL STURM-LIOUVILLE DIFFERENTIAL EQUATIONS WITH INSTANTANEOUS AND NON-INSTANTANEOUS IMPULSES[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 1113-1133. doi: 10.11948/20240278

VARIATIONAL APPROACH TO MIXED BOUNDARY VALUE PROBLEMS OF FRACTIONAL STURM-LIOUVILLE DIFFERENTIAL EQUATIONS WITH INSTANTANEOUS AND NON-INSTANTANEOUS IMPULSES

  • This paper investigates a class of fractional Sturm-Liouville differential equations with mixed boundary conditions, which are subjected to parameter and impulsive perturbations (including instantaneous and non-instantaneous impulses). By employing the variational methods and critical point theorems, we derive several criteria that guarantee the existence of at least one and two classical solutions, respectively, when the parameters fall within different intervals. Furthermore, we provide an example to demonstrate the effectiveness of our main results.

    MSC: 34A08, 34B08, 34B15, 34B37
  • 加载中
  • [1] G. A. Afrouzi and A. Hadjian, A variational approach for boundary value problems for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 2018, 21(6), 1565–1584. doi: 10.1515/fca-2018-0082

    CrossRef Google Scholar

    [2] R. Agarwal, S. Hristova and D. O'Regan, Non-Instantaneous Impulses in Differential Equations, Springer, Cham, 2017.

    Google Scholar

    [3] R. Almeida, Fractional differential equations with mixed boundary conditions, Bull. Malays. Math. Sci. Soc., 2019, 42(4), 1687–1697. doi: 10.1007/s40840-017-0569-6

    CrossRef Google Scholar

    [4] R. Bourguiba, A. Cabada and O. K. Wanassi, Existence of solutions of discrete fractional problem coupled to mixed fractional boundary conditions, Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A-Mat., 2022, 116(4), Paper No. 175, 15 pp.

    Google Scholar

    [5] J. Carmona, E. Colorado, T. Leonori and A. Ortega, Semilinear fractional elliptic problems with mixed Dirichlet-Neumann boundary conditions, Fract. Calc. Appl. Anal., 2020, 23(4), 1208–1239. doi: 10.1515/fca-2020-0061

    CrossRef Google Scholar

    [6] D. G. Duffy, Mixed Boundary Value Problems, Chapman & Hall/CRC, Boca Raton, 2008.

    Google Scholar

    [7] H. A. Fallahgoul, S. M. Focardi and F. J. Fabozzi, Fractional Calculus and Fractional Processes with Applications to Financial Economics, Elsevier/Academic Press, London, 2017.

    Google Scholar

    [8] D. Gao and J. Li, New results for impulsive fractional differential equations through variational methods, Math. Nachr., 2021, 294(10), 1866–1878. doi: 10.1002/mana.201800383

    CrossRef Google Scholar

    [9] S. Heidarkhani and A. Salari, Nontrivial solutions for impulsive fractional differential systems through variational methods, Math. Methods Appl. Sci., 2020, 43(10), 6529–6541. doi: 10.1002/mma.6396

    CrossRef Google Scholar

    [10] E. Hernández and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 2013, 141(5), 1641–1649.

    Google Scholar

    [11] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

    Google Scholar

    [12] V. Hutson and J. S. Pym, Applications of Functional Analysis and Operator Theory, Academic Press, Inc., New York-London, 1980.

    Google Scholar

    [13] C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado and J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul., 2017, 51, 141–159. doi: 10.1016/j.cnsns.2017.04.001

    CrossRef Google Scholar

    [14] F. Jiao and Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 2011, 62(3), 1181–1199. doi: 10.1016/j.camwa.2011.03.086

    CrossRef Google Scholar

    [15] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

    Google Scholar

    [16] T. Kim and D. Cao, Equations of Motion for Incompressible Viscous Fluids: With Mixed Boundary Conditions, Birkhäuser/Springer, Cham, 2021.

    Google Scholar

    [17] C. E. T. Ledesma and N. Nyamoradi, (k, ψ)-Hilfer impulsive variational problem, Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A-Mat., 2023, 117(1), Paper No. 42, 34 pp.

    Google Scholar

    [18] D. Li, F. Chen, Y. Wu and Y. An, Variational formulation for nonlinear impulsive fractional differential equations with (p, q)-Laplacian operator, Math. Methods Appl. Sci., 2022, 45(1), 515–531. doi: 10.1002/mma.7791

    CrossRef Google Scholar

    [19] Y. Liu, A new method for converting boundary value problems for impulsive fractional differential equations to integral equations and its applications, Adv. Nonlinear Anal., 2019, 8(1), 386–454.

    Google Scholar

    [20] B. Łupiúska, Existence of solutions to nonlinear Katugampola fractional differential equations with mixed fractional boundary conditions, Math. Methods Appl. Sci., 2023, 46(11), 12007–12017. doi: 10.1002/mma.8894

    CrossRef Google Scholar

    [21] A. I. N. Malti, M. Benchohra, J. R. Graef and J. E. Lazreg, Impulsive boundary value problems for nonlinear implicit Caputo-exponential type fractional differential equations, Electron. J. Qual. Theory Differ. Equ., 2020. DOI: 10.14232/ejqtde.2020.1.78.

    CrossRef Google Scholar

    [22] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.

    Google Scholar

    [23] D. Min and F. Chen, Variational methods to the p-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem, Fract. Calc. Appl. Anal., 2021, 24(4), 1069–1093. doi: 10.1515/fca-2021-0046

    CrossRef Google Scholar

    [24] N. Nyamoradi, Existence and multiplicity of solutions for impulsive fractional differential equations, Mediterr. J. Math., 2017, 14(2), Paper No. 85, 17 pp.

    Google Scholar

    [25] N. Nyamoradi and S. Tersian, Existence of solutions for nonlinear fractional order p-Laplacian differential equations via critical point theory, Fract. Calc. Appl. Anal., 2019, 22(4), 945–967. doi: 10.1515/fca-2019-0051

    CrossRef Google Scholar

    [26] R. Rizwan and A. Zada, Nonlinear impulsive Langevin equation with mixed derivatives, Math. Methods Appl. Sci., 2020, 43(1), 427–442. doi: 10.1002/mma.5902

    CrossRef Google Scholar

    [27] R. Rodríguez-López and S. Tersian, Multiple solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 2014, 17(4), 1016–1038. doi: 10.2478/s13540-014-0212-2

    CrossRef Google Scholar

    [28] A. M. Samoĭlenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1995.

    Google Scholar

    [29] Y. Tian and J. J. Nieto, The applications of critical-point theory to discontinuous fractional-order differential equations, Proc. Edinb. Math. Soc., 2017, 60(4), 1021–1051. doi: 10.1017/S001309151600050X

    CrossRef Google Scholar

    [30] E. Zeidler, Nonlinear Functional Analysis and its Applications. Ⅲ. Variational Methods and Optimization, Springer-Verlag, New York, 1985.

    Google Scholar

    [31] W. Zhang and J. Ni, Study on a new p-Laplacian fractional differential model generated by instantaneous and non-instantaneous impulsive effects, Chaos Solitons Fractals, 2023, 168, Paper No. 113143, 7 pp.

    Google Scholar

Article Metrics

Article views(464) PDF downloads(172) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint