2025 Volume 15 Issue 3
Article Contents

Ji Li, Qing Yu, Qian Zhang. UNFOLDING A HOPF BIFURCATION IN A LINEAR REACTION-DIFFUSION EQUATION WITH STRONGLY LOCALIZED IMPURITY[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1742-1769. doi: 10.11948/20240379
Citation: Ji Li, Qing Yu, Qian Zhang. UNFOLDING A HOPF BIFURCATION IN A LINEAR REACTION-DIFFUSION EQUATION WITH STRONGLY LOCALIZED IMPURITY[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1742-1769. doi: 10.11948/20240379

UNFOLDING A HOPF BIFURCATION IN A LINEAR REACTION-DIFFUSION EQUATION WITH STRONGLY LOCALIZED IMPURITY

  • This paper presents a general framework to derive the weakly nonlinear stability near a Hopf bifurcation in a special class of multi-scale reaction-diffusion equations. The main focus is on how the linearity and nonlinearity of the fast variables in system influence the emergence of the breathing pulses when the slow variables are linear and the bifurcation parameter is around the Hopf bifurcation point. By applying the matching principle to the fast and slow changing quantities and using the singular perturbation theory, we obtain explicit expressions for the stationary pulses. Then, the normal form theory and the center manifold theory are applied to give Hopf normal form expressions. Finally, one of these expressions is verified by the numerical simulation.

    MSC: 37L10, 35K57, 35B25, 35B36
  • 加载中
  • [1] M. Argentina and P. Coullet, Chaotic nucleation of metastable domains, Phys. Rev. E., 1997, 56(3), R2359. doi: 10.1103/PhysRevE.56.R2359

    CrossRef Google Scholar

    [2] R. Bastiaansen, P. Carter and A. Doelman, Stable planar vegetation stripe patterns on sloped terrain in dryland ecosystems, Nonlinearity, 2019, 32, 2759–2814. doi: 10.1088/1361-6544/ab1767

    CrossRef Google Scholar

    [3] P. C. Bressloff and S. E. Folias, Front bifurcations in an excitatory neural network, SIAM J. Appl. Math., 2004, 65(1), 131–151. doi: 10.1137/S0036139903434481

    CrossRef Google Scholar

    [4] P. C. Bressloff, S. E. Folias, A. Prat and Y. X. Li, Oscillatory waves in inhomogeneous neural media, Phys. Rev. Lett., 2003, 91(17), 178101. doi: 10.1103/PhysRevLett.91.178101

    CrossRef Google Scholar

    [5] P. C. Bressloff and Z. P. Kilpatrick, Two-dimensional bumps in piecewise smooth neural fields with synaptic depression, SIAM J. Appl. Math., 2011, 71(2), 379–408. doi: 10.1137/100799423

    CrossRef Google Scholar

    [6] P. Carter and A. Doelman, Traveling stripes in the Klausmeier model of vegetation pattern formation, SIAM J. Appl. Math., 2018, 78(6), 3213–3237. doi: 10.1137/18M1196996

    CrossRef Google Scholar

    [7] W. Chen and M. J. Ward, Oscillatory instabilities and dynamics of multi-spike patterns for the one-dimensional Gray-Scott model, Eur. J. Appl. Math., 2009, 20(2), 187–214. doi: 10.1017/S0956792508007766

    CrossRef Google Scholar

    [8] W. Chen and M. J. Ward, The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model, SIAM J. Appl. Dyn. Syst., 2011, 10(2), 582–666. doi: 10.1137/09077357X

    CrossRef Google Scholar

    [9] Y. X. Chen, J. Li, J. H. Shen and Q. Zhang, Pattern formations in nonlinear reaction-diffusion systems with strong localized impurities, J. Diff. Eqs., 2024, 402, 250–289. doi: 10.1016/j.jde.2024.05.004

    CrossRef Google Scholar

    [10] M. Chirilus, P. van Heijster, H. Ikeda and J. D. Rademacher, Unfolding symmetric Bogdanov–Takens bifurcations for front dynamics in a reaction–diffusion system, J. Nonlinear Sci., 2019, 29, 2911–2953. doi: 10.1007/s00332-019-09563-2

    CrossRef Google Scholar

    [11] S. Coombes, P. B. Graben, R. Potthast and J. Wright, Neural Fields: Theory and Applications, Springer, 2014.

    Google Scholar

    [12] A. Doelman, P. van Heijster and J. H. Shen, Pulse dynamics in reaction–diffusion equations with strong spatially localized impurities, Philos. Trans. Roy. Soc. A, 2018, 376, 1–20.

    Google Scholar

    [13] A. Doelman, T. J. Kaper and K. Promislow, Nonlinear asymptotic stability of the semistrong pulse dynamics in a regularized Gierer-Meinhardt model, SIAM J. Math. Anal., 2007, 38(6), 1760–1787. doi: 10.1137/050646883

    CrossRef Google Scholar

    [14] A. Doelman, T. J. Kaper and P. A. Zegeling, Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity, 1997, 10(2), 523. doi: 10.1088/0951-7715/10/2/013

    CrossRef Google Scholar

    [15] F. Dumortier, R. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part, the cusp case of codimension 3, Ergodic Theory Dynam. Systems, 1987, 7(3), 375–413. doi: 10.1017/S0143385700004119

    CrossRef Google Scholar

    [16] M. Eslami, M. Kanafchian and G. Oppo, Oscillatory and chaotic regimes of patterns and dark cavity solitons in cavities displaying EIT: Static multihead dual chimera states, Chaos Solitons Fractals, 2023, 167, 113080. doi: 10.1016/j.chaos.2022.113080

    CrossRef Google Scholar

    [17] S. J. Fan, A new extracting formula and a new distinguishing means on the one variable cubic equation, Natur. Sci. J. Hainan Teacheres College, 1989, 2, 91–98.

    Google Scholar

    [18] W. J. Firth, G. K. Harkness, A. Lord, J. M. McSloy, D. Gomila and P. Colet, Dynamical properties of two-dimensional Kerr cavity solitons, J. Opti. Soc. Amer. B-Opti. Phys., 2002, 19, 747–752. doi: 10.1364/JOSAB.19.000747

    CrossRef Google Scholar

    [19] S. E. Folias and P. C. Bressloff, Breathing pulses in an excitatory neural network, SIAM J. Appl. Dyn. Syst., 2004, 3(3), 378–407. doi: 10.1137/030602629

    CrossRef Google Scholar

    [20] S. E. Folias and P. C. Bressloff, Stimulus-locked traveling waves and breathers in an excitatory neural network, SIAM J. Appl. Math., 2005, 65(6), 2067–2092. doi: 10.1137/040615171

    CrossRef Google Scholar

    [21] A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 1972, 12, 30–39. doi: 10.1007/BF00289234

    CrossRef Google Scholar

    [22] D. Gomila, P. Colet, M. A. Matías, G. L. Oppa and M. S. Miguel, Localized structures in nonlinear optical cavities, Topical Problems of Nonlinear Wave Physics, SPIE., 2006, 5975.

    Google Scholar

    [23] S. S. Gopalakrishnan, M. Tlidi, M. Taki and K. Panajotov, Breathing of dissipative light bullets of nonlinear polarization mode in Kerr resonators, Optics Letters, 2022, 47(15), 3652–3655. doi: 10.1364/OL.455758

    CrossRef Google Scholar

    [24] P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability, Chem. Eng. Sci., 1983, 38(1), 29–43. doi: 10.1016/0009-2509(83)80132-8

    CrossRef Google Scholar

    [25] S. V. Gurevich, S. Amiranashvili and H. G. Purwins, Breathing dissipative solitons in three-component reaction-diffusion system, Phys. Rev. E., 2006, 74(6), 066201. doi: 10.1103/PhysRevE.74.066201

    CrossRef Google Scholar

    [26] M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, London, Springer, 2011.

    Google Scholar

    [27] C. K. R. T. Jones, Geometric singular perturbation theory, Dynamical Systems: Lectures Given at the 2nd Session of the Centro Internazionale Matematico Estivo (CIME) Held in Montecatini Terme, Italy, June 13šC22, 1995, 1994, 44–118.

    Google Scholar

    [28] T. Kapitula and K. Promislow, Spectral and Dynamical Stability of Nonlinear Waves, New York, Springer, 2013.

    Google Scholar

    [29] S. Koga and Y. Kuramoto, Localized patterns in reaction-diffusion systems, Prog. Theor. Phys., 1980, 63(1), 106–121. doi: 10.1143/PTP.63.106

    CrossRef Google Scholar

    [30] Y. A. Kuznetsov, I. A. Kuznetsov and Y. Kuznetsov, Elements of Applied Bifurcation Theory, Vol. 112. New York, Springer, 1998.

    Google Scholar

    [31] J. Li, J. H. Shen and Q. Zhang, Pinned pulses in nonlinear reaction-diffusion equations with strong localized impurities, Internat. J. Bifur. Chaos, accepted.

    Google Scholar

    [32] A. L. Shil'Nikov, L. P. Shil'Nikov and D. V. Turaev, Normal forms and Lorenz attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1993, 3(5), 1123–1139. doi: 10.1142/S0218127493000933

    CrossRef Google Scholar

    [33] D. Turaev, A. G. Vladimirov and S. Zelik, Long-range interaction and synchronization of oscillating dissipative solitons, Phys. Rev. Lett., 2012, 108(26), 263906. doi: 10.1103/PhysRevLett.108.263906

    CrossRef Google Scholar

    [34] F. Veerman, Breathing pulses in singularly perturbed reaction-diffusion systems, Nonlinearity, 2015, 28(7), 2211. doi: 10.1088/0951-7715/28/7/2211

    CrossRef Google Scholar

    [35] F. Veerman and A. Doelman, Pulses in a Gierer-Meinhardt equation with a slow nonlinearity, SIAM J. Appl. Dyn. Syst., 2013, 12(1), 28–60. doi: 10.1137/120878574

    CrossRef Google Scholar

    [36] A. G. Vladimirov, S. V. Fedorov, N. A. Kaliteevskii, G. V. Khodova and N. N. Rosanov, Numerical investigation of laser localized structures, Journal of Optics B: Quantum and Semiclassical Optics, 1999, 1(1), 101. doi: 10.1088/1464-4266/1/1/019

    CrossRef Google Scholar

    [37] M. J. Ward and J. Wei, Hopf bifurcations and oscillatory instabilities of spike solutions for the one-dimensional Gierer-Meinhardt model, J. Nonlinear Sci., 2003, 13, 209–264. doi: 10.1007/s00332-002-0531-z

    CrossRef Google Scholar

    [38] M. J. Ward and J. Wei, Hopf bifurcation of spike solutions for the shadow Gierer–Meinhardt model, Eur. J. Appl. Math., 2003, 14(6), 677–711. doi: 10.1017/S0956792503005278

    CrossRef Google Scholar

Figures(4)

Article Metrics

Article views(265) PDF downloads(115) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint