2025 Volume 15 Issue 3
Article Contents

Raymond Kitengeso, Zhoushun Zheng. A CONVERGENT NUMERICAL APPROXIMATION FOR THE COUPLED MAXWELL-LANDAU-LIFSHITZ-GILBERT EQUATIONS WITH INERTIA EFFECTS[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1719-1741. doi: 10.11948/20240364
Citation: Raymond Kitengeso, Zhoushun Zheng. A CONVERGENT NUMERICAL APPROXIMATION FOR THE COUPLED MAXWELL-LANDAU-LIFSHITZ-GILBERT EQUATIONS WITH INERTIA EFFECTS[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1719-1741. doi: 10.11948/20240364

A CONVERGENT NUMERICAL APPROXIMATION FOR THE COUPLED MAXWELL-LANDAU-LIFSHITZ-GILBERT EQUATIONS WITH INERTIA EFFECTS

  • Author Bio: Email: zszheng@csu.edu.cn(Z. Zheng)
  • Corresponding author: Email: kitengeso@csu.edu.cn(R. Kitengeso) 
  • Fund Project: The authors were supported by the China Scholarship Council (2020GBJ00921) and the National Natural Science Foundation of China (51974377)
  • This study aims to analyze the coupled finite element and boundary element (FEM-BEM) solution to the nonlinear system of Maxwell and inertia Landau–Lifshitz–Gilbert equations. An algorithm is proposed to numerically solve the weak form of this problem, which requires solving coupled linear systems per time step. The algorithm is coupled in the sense that it consists of the sequential computation of the magnetic and electric fields in both the interior and boundary domains, and magnetization afterward. Under some mild assumptions on the effective field, the findings show that the algorithm converges towards a weak solution of the Maxwell-Inertia Landau–Lifshitz–Gilbert system. Numerical experiments demonstrate the algorithm's applicability for a theoretical micromagnetic example.

    MSC: 35Q61, 65M12, 65M38, 65M60
  • 加载中
  • [1] G. Akrivis, M. Feischl, B. Kovács and C. Lubich, Higher-order linearly implicit full discretization of the Landau–Lifshitz–Gilbert equation, Math. Comput., 2021, 90(329), 995–1038. doi: 10.1090/mcom/3597

    CrossRef Google Scholar

    [2] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes and G. N. Wells, Unified form language, ACM Trans. Math. Softw., 2014, 40, 1–37.

    Google Scholar

    [3] S. Bartels, Stability and convergence of finite-element approximation schemes for harmonic maps, SIAM J. Numer. Anal., 2005, 43(1), 220–238. doi: 10.1137/040606594

    CrossRef Google Scholar

    [4] T. Betcke and M. W. Scroggs, Bempp-cl: A fast python based just-in-time compiling boundary element library, J. Open Source Softw., 2021, 6, 2879. doi: 10.21105/joss.02879

    CrossRef Google Scholar

    [5] J. Bohn, M. Feischl and B. Kovács, Fem-bem coupling for the Maxwell–Landau–Lifshitz–Gilbert equations via convolution quadrature: Weak form and numerical approximation, Comput. Methods Appl. Math., 2023, 23, 19–48. doi: 10.1515/cmam-2022-0145

    CrossRef Google Scholar

    [6] Y. Cai, J. Chen, C. Wang and C. Xie, Error analysis of a linear numerical scheme for the landau–lifshitz equation with large damping parameters, Math. Meth. Appl. Sci., 2023, 46(18), 18952–18974. doi: 10.1002/mma.9601

    CrossRef Google Scholar

    [7] Y. Cai, J. Chen, C. Wang and C. Xie, A second-order numerical method for Landau-Lifshitz-Gilbert equation with large damping parameters, J. Comput. Phys., 2022, 451, 110831. doi: 10.1016/j.jcp.2021.110831

    CrossRef Google Scholar

    [8] J. Chen, C. Wang and C. Xie, Convergence analysis of a second-order semi-implicit projection method for Landau-Lifshitz equation, Appl. Numer. Math., 2021, 168, 55–74. doi: 10.1016/j.apnum.2021.05.027

    CrossRef Google Scholar

    [9] I. Cimrák, Existence, regularity and local uniqueness of the solutions to the Maxwell–Landau–Lifshitz system in three dimensions, J. Math. Anal. Appl., 2007, 329, 1080–1093. doi: 10.1016/j.jmaa.2006.06.080

    CrossRef Google Scholar

    [10] M. C. Ciornei, J. M. Rubí and J. E. Wegrowe, Magnetization dynamics in the inertial regime: Nutation predicted at short time scales, Phys. Rev. B, 2011, 83, 020410. doi: 10.1103/PhysRevB.83.020410

    CrossRef Google Scholar

    [11] D. Colton and R. Kress, Boundary-value problems for the time-harmonic Maxwell equations and the vector Helmholtz equation, Integral Equation Methods in Scattering Theory, SIAM, USA, 2013, Ch. 4, 108–149.

    Google Scholar

    [12] M. Feischl and T. Tran, Existence of regular solutions of the Landau–Lifshitz–Gilbert equation in $3d$ with natural boundary conditions, SIAM J. Math. Anal., 2017, 49, 4470–4490. doi: 10.1137/16M1103427

    CrossRef $3d$ with natural boundary conditions" target="_blank">Google Scholar

    [13] A. François, K. Evaggelos and T. Jean-Christophe, A convergent finite element approximation for Landau–lifschitz–Gilbert equation, Physica B, 2012, 407(9), 1345–1349. doi: 10.1016/j.physb.2011.11.031

    CrossRef Google Scholar

    [14] G. D. Fratta, M. Innerberger and D. Praetorius, Weak–strong uniqueness for the Landau–Lifshitz–Gilbert equation in micromagnetics, Nonlinear Anal. -Real World Appl., 2020, 55, 103122. doi: 10.1016/j.nonrwa.2020.103122

    CrossRef Google Scholar

    [15] B. Goldys, K. N. Le and T. Tran, A finite element approximation for the stochastic Landau–Lifshitz–Gilbert equation, J. Differ. Equ., 2016, 260(2), 937–970. doi: 10.1016/j.jde.2015.09.012

    CrossRef Google Scholar

    [16] E. Kim and K. Lipnikov, The mimetic finite difference method for the Landau–Lifshitz equation, J. Comput. Phys., 2017, 328, 109–130. doi: 10.1016/j.jcp.2016.10.016

    CrossRef Google Scholar

    [17] B. Kovács and C. Lubich, Stable and convergent fully discrete interior–exterior coupling of Maxwell's equations, Numer. Math., 2017, 137(91), 117–137.

    Google Scholar

    [18] M. Lakshmanan, The fascinating world of the Landau–Lifshitz–Gilbert equation: An overview, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 2011, 369, 1280–1300.

    Google Scholar

    [19] K. N. Le and T. Tran, A convergent finite element approximation for the quasi-static Maxwell–Landau–Lifshitz–Gilbert equations, Comput. Math. Appl., 2013, 66(8), 1389–1402. doi: 10.1016/j.camwa.2013.08.009

    CrossRef Google Scholar

    [20] B. Li, J. Wang and L. Xu, A convergent linearized lagrange finite element method for the magneto-hydrodynamic equations in two-dimensional nonsmooth and nonconvex domains, SIAM J. Numer. Anal., 2020, 58, 430–459. doi: 10.1137/18M1205649

    CrossRef Google Scholar

    [21] K. Neeraj, N. Awari, S. Kovalev, D. Polley, N. Zhou Hagström, S. S. P. K. Arekapudi, A. Semisalova, K. Lenz, B. Green, J. C. Deinert, I. Ilyakov, M. Chen, M. Bawatna, V. Scalera, M. d'Aquino, C. Serpico, O. Hellwig, J. E. Wegrowe, M. Gensch and S. Bonetti, Inertial spin dynamics in ferromagnets, Nat. Phys., 2021, 1, 245–250.

    Google Scholar

    [22] M. Ruggeri, Numerical analysis of the Landau–Lifshitz–Gilbert equation with inertial effects, ESAIM-Math. Model. Numer. Anal., 2022, 56, 1199–1222. doi: 10.1051/m2an/2022043

    CrossRef Google Scholar

    [23] M. W. Scroggs, T. Betcke, E. Burman, W. Śmigaj and E. van't Wout, Software frameworks for integral equations in electromagnetic scattering based on calderón identities, Comput. Math. Appl., 2017, 74(11), 2897–2914. doi: 10.1016/j.camwa.2017.07.049

    CrossRef Google Scholar

    [24] C. Xie, C. J. García-Cervera, C. Wang, Z. Zhou and J. Chen, Second-order semi-implicit projection methods for micromagnetics simulations, J. Comput. Phys., 2020, 404, 109104. doi: 10.1016/j.jcp.2019.109104

    CrossRef Google Scholar

    [25] P. Zhong, F. Wu and S. Tang, Renormalization for the laplacian and global well-possness of the Landau–Lifshitz–Gilbert equation in dimensions $n \geq3$, Bound. Value Probl., 2020, 2020, 96. doi: 10.1186/s13661-020-01377-6

    CrossRef $n \geq3$" target="_blank">Google Scholar

Figures(7)

Article Metrics

Article views(394) PDF downloads(126) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint