2025 Volume 15 Issue 5
Article Contents

Ahmed Bchatnia, Abderrahmane Beniani, Boumediene Boukhari, Foued Mtiri. THEORETICAL AND NUMERICAL STABILITY OF THE BRESSE SYSTEM: EXPLORING FRACTIONAL DAMPING THROUGH TRADITIONAL AND NEURAL NETWORK APPROACHES[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2663-2694. doi: 10.11948/20240410
Citation: Ahmed Bchatnia, Abderrahmane Beniani, Boumediene Boukhari, Foued Mtiri. THEORETICAL AND NUMERICAL STABILITY OF THE BRESSE SYSTEM: EXPLORING FRACTIONAL DAMPING THROUGH TRADITIONAL AND NEURAL NETWORK APPROACHES[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2663-2694. doi: 10.11948/20240410

THEORETICAL AND NUMERICAL STABILITY OF THE BRESSE SYSTEM: EXPLORING FRACTIONAL DAMPING THROUGH TRADITIONAL AND NEURAL NETWORK APPROACHES

  • This paper investigates the theoretical and numerical stability of the one-dimensional Bresse system with fractional damping terms in a bounded domain. We first establish the well-posedness of the system. Using the frequency domain approach and a theorem by Borichev and Tomilov, we derive the polynomial decay rate of the system. To validate these theoretical results, we propose a numerical scheme and compare its performance with the Fractional Physics-Informed Neural Network (fPINN). The comparative analysis highlights the effectiveness of traditional numerical methods and fPINNs in capturing the decay rate, offering new insights into the advancement of computational techniques for complex physical systems.

    MSC: 35L05, 26A33
  • 加载中
  • [1] Z. Achouri, N. Amroun and A. Benaissa, The Euler Bernoulli beam equation with boundary dissipation of fractional derivative, Math. Methods Appl. Sci., 2017, 40(11), 3837–3854. doi: 10.1002/mma.4267

    CrossRef Google Scholar

    [2] M. Akil, Y. Chitour, M. Ghader and A. Wehbe, Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary, Asymptotic Analysis, 2020, 119(3), 221–280. DOI: 10.3233/ASY-191574.

    CrossRef Google Scholar

    [3] M. Akil, M. Ghader and A. Wehbe, The influence of the coefficients of a system of wave equations coupled by velocities with fractional damping on its boundary stabilization, Bull. Span. Soc. Appl. Math. SEMA, 2021, 78, 287–333. DOI: 10.1007/s40324-020-00233-y.

    CrossRef Google Scholar

    [4] M. Akil, I. Issa and A. Wehbe, Energy decay rate of the Euler-Bernoulli beam and wave equations via boundary connection with one locally non-regular fractional Kelvin-Voigt damping, Math. Control Relat. Fields, 2023, 13(1), 330–381. doi: 10.3934/mcrf.2021059

    CrossRef Google Scholar

    [5] M. Akil and A. Wehbe, Indirect stability of a multidimensional coupled wave equations with one locally boundary fractional damping, Math. Nachr., 2022, 295(12), 2272–2300. DOI: 10.1002/mana.202100185.

    CrossRef Google Scholar

    [6] M. Akil and A. Wehbe, Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions, Math. Control Relat. Fields, 2019, 9(1), 97–116. doi: 10.3934/mcrf.2019005

    CrossRef Google Scholar

    [7] S. Alfalqi, B. Boukhari, A. Bchatnia and A. Beniani, Advanced neural network approaches for coupled equations with fractional derivatives, Bound. Value Probl., 2024, 96, 1–18.

    Google Scholar

    [8] D. S. Almeida Junior, J. E. Munoz Rivera and M. L. Santos, Bresse system with Fourier law on shear force, Adv. Differ. Equ., 2016, 21(1–2), 55–84.

    Google Scholar

    [9] M. O. Alves, L. H. Fatori, M. A. Jorge Silva and R. N. Monteiro, Stability and optimality of decay rate for a weakly dissipative Bresse system, Math. Methods Appl. Sci., 2015, 38, 898–908. doi: 10.1002/mma.3115

    CrossRef Google Scholar

    [10] T. El Arwadi, M. I. M. Copetti and W. Youssef, On the theoretical and numerical stability of the thermoviscoelastic Bresse system, Z. Angew. Math. Mech., 2019, 99.

    Google Scholar

    [11] C. J. K. Batty, R. Chill and Y. Tomilov, Fine scales of decay of operator semigroups, J. Eur. Math. Soc. (JEMS), 2016, 18, 853–929. doi: 10.4171/jems/605

    CrossRef Google Scholar

    [12] A. Beniani, N. Bahri, R. Alharbi, K. Bouhali and Kh. Zennir, Stability for weakly coupled wave equations with a general internal control of diffusive type, Axioms, 2023, 12(1), 48. DOI: 10.3390/axioms12010048.

    CrossRef Google Scholar

    [13] C. Bernardi and M. I. M. Copetti, Discretization of a nonlinear dynamic thermoviscoelastic Timoshenko beam model, Z. Angew. Math. Mech., 2017, 97, 532–549. doi: 10.1002/zamm.201500193

    CrossRef Google Scholar

    [14] J. A. C. Bresse, Cours de Mécaniques Appliquée, Mallet-Bachelier, Paris, 1859.

    Google Scholar

    [15] M. Bzeih, T. El Arwadi and M. Hindi, Numerical analysis and simulation for Rayleigh beam equation with dynamical boundary controls, Arab. J. Math., 2021, 10, 331–349. doi: 10.1007/s40065-021-00310-8

    CrossRef Google Scholar

    [16] M. I. M. Copetti, T. El Arwadi, J. R. Fernández, M. G. Naso and W. Youssef, Analysis of a contact problem for a viscoelastic Bresse system, ESAIM Math. Model. Numer. Anal., 2021, 55, 887–911. doi: 10.1051/m2an/2021015

    CrossRef Google Scholar

    [17] L. H. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system, IMA J. Appl. Math., 2010, 75, 881–904. doi: 10.1093/imamat/hxq038

    CrossRef Google Scholar

    [18] Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 2009, 60, 54–69. doi: 10.1007/s00033-008-6122-6

    CrossRef Google Scholar

    [19] B. Mbodje, Wave energy decay under fractional derivative controls, IAM J. Control Optim, 2006, 23, 237–257.

    Google Scholar

    [20] M. A. Rincon and M. I. M. Copetti, Numerical analysis for a locally damped wave equation, J. Appl. Anal. Comput., 2013, 30, 169–182.

    Google Scholar

    [21] M. L. Santos and D. S. Almeida Junior, Numerical exponential decay to dissipative Bresse system, J. Appl. Math., 2010.

    Google Scholar

Figures(8)  /  Tables(2)

Article Metrics

Article views(84) PDF downloads(47) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint