2025 Volume 15 Issue 5
Article Contents

Jing-Yu Wang, Hong-Ping Yin, Bo-Yan Xi, Feng Qi. CORRECTIONS TO ERRORS IN THE PAPER 'HADAMARD-TYPE INEQUALITIES FOR s-CONVEX FUNCTIONS I' AND NEW INTEGRAL INEQUALITIES OF s-CONVEX FUNCTIONS IN THE SECOND SENSE[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2652-2662. doi: 10.11948/20240403
Citation: Jing-Yu Wang, Hong-Ping Yin, Bo-Yan Xi, Feng Qi. CORRECTIONS TO ERRORS IN THE PAPER "HADAMARD-TYPE INEQUALITIES FOR s-CONVEX FUNCTIONS I" AND NEW INTEGRAL INEQUALITIES OF s-CONVEX FUNCTIONS IN THE SECOND SENSE[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2652-2662. doi: 10.11948/20240403

CORRECTIONS TO ERRORS IN THE PAPER "HADAMARD-TYPE INEQUALITIES FOR s-CONVEX FUNCTIONS I" AND NEW INTEGRAL INEQUALITIES OF s-CONVEX FUNCTIONS IN THE SECOND SENSE

  • In the work, the authors correct some errors appeared in the paper “S. Hussain, M. I. Bhatti and M. Iqbal, Hadamard-type inequalities for s-convex functions I, Punjab Univ. J. Math. (Lahore), 41 (2009), 51–60” and establish some new integral inequalities of s-convex functions in the second sense.

    MSC: 26A51, 26D15, 26D20, 26E60, 41A55
  • 加载中
  • [1] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen, Publ. Inst. Math. (Beograd) (N.S. ), 1978, 23(37), 13–20. (German)

    Google Scholar

    [2] B. Çelik, E. Set, A. O. Akdemir and M. E. Özdemir, Novel generalizations for Grüss type inequalities pertaining to the constant proportional fractional integrals, Appl. Comput. Math., 2023, 22(2), 275–291. Available online at https://doi.org/10.30546/1683-6154.22.2.2023.275. doi: 10.30546/1683-6154.22.2.2023.275

    CrossRef Google Scholar

    [3] G. Gulshan, H. Budak, R. Hussain and K. Nonlaopon, Some new quantum Hermite-Hadamard type inequalities for s-convex functions, Symmetry, 2022, 14(5), Art. 870, 14 pp. Available online at https://doi.org/10.3390/sym14050870. doi: 10.3390/sym14050870

    CrossRef Google Scholar

    [4] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 1994, 48(1), 100–111. Available online at http://dx.doi.org/10.1007/BF01837981. doi: 10.1007/BF01837981

    CrossRef Google Scholar

    [5] S. Hussain, M. I. Bhatti and M. Iqbal, Hadamard-type inequalities for s-convex functions I, Punjab Univ. J. Math. (Lahore), 2009, 41, 51–60.

    Google Scholar

    [6] A. Karaoğlan, E. Set, A. O. Akdemir and M. E. Özdemir, Fractional integral inequalities for preinvex functions via Atangana–Baleanu integral operators, Miskolc Math. Notes, 2024, 25(1), 329–347. Available online at https://doi.org/10.18514/MMN.2024.4367. doi: 10.18514/MMN.2024.4367

    CrossRef Google Scholar

    [7] M. A. Khan, Y.-M. Chu, T. U. Khan and J. Khan, Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., 2017, 15(1), 1414–1430. Available online at https://doi.org/10.1515/math-2017-0121. doi: 10.1515/math-2017-0121

    CrossRef Google Scholar

    [8] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 2004, 147(1), 137–146. Available online at http://dx.doi.org/10.1016/S0096-3003(02)00657-4. doi: 10.1016/S0096-3003(02)00657-4

    CrossRef Google Scholar

    [9] U. S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir and J. Pečarić, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput., 2007, 193(1), 26–35. Available online at http://dx.doi.org/10.1016/j.amc.2007.03.030. doi: 10.1016/j.amc.2007.03.030

    CrossRef Google Scholar

    [10] M. Samraiz, M. Malik, S. Naheed and A. O. Akdemir, Error estimates of Hermite–Hadamard type inequalities with respect to a monotonically increasing function, Math. Methods Appl. Sci., 2023, 46(13), 14527–14546. Available online at https://doi.org/10.1002/mma.9334. doi: 10.1002/mma.9334

    CrossRef Google Scholar

    [11] M. Z. Sarikaya, E. Set and M. E. Özdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl., 2010, 60(8), 2191–2199. Availble online at http://dx.doi.org/10.1016/j.camwa.2010.07.033. doi: 10.1016/j.camwa.2010.07.033

    CrossRef Google Scholar

    [12] E. Set, A. O. Akdemir and A. Karaoğlan, New integral inequalities for synchronous functions via Atangana–Baleanu fractional integral operators, Chaos Solitons Fractals, 2024, 186, Paper No. 115193, 6 pp. Available online at https://doi.org/10.1016/j.chaos.2024.115193. doi: 10.1016/j.chaos.2024.115193

    CrossRef Google Scholar

    [13] J.-Y. Wang, X.-M. Liu, H.-P. Yin and B.-N. Guo, Some new integral inequalities of Hermite–Hadamard type for functions whose third derivatives are (α, s, m)-convex, Miskolc Math. Notes, 2025, 26(1), in Press. Available online at https://doi.org/10.18514/MMN.2025.4756.

    Google Scholar

    [14] J.-Y. Wang, H.-P. Yin, W.-L. Sun and B.-N. Guo, Hermite–Hadamard's integral inequalities of (α, s)-GA-and (α, s, m)-GA-convex functions, Axioms, 2022, 11(11), Art. 616, 12 pp. Available online at https://doi.org/10.3390/axioms11110616. doi: 10.3390/axioms11110616

    CrossRef Google Scholar

    [15] B.-Y. Xi, D.-D. Gao and F. Qi, Integral inequalities of Hermite–Hadamard type for (α, s)-convex and (α, s, m)-convex functions, Ital. J. Pure Appl. Math., 2020, 44, 499–510.

    Google Scholar

    [16] B.-Y. Xi, S.-H. Wang and F. Qi, Some inequalities for (h, m)-convex functions, J. Inequal. Appl., 2014, 2014, Art. 100, 12 pp. Available online at http://dx.doi.org/10.1186/1029-242X-2014-100. doi: 10.1186/1029-242X-2014-100

    CrossRef Google Scholar

    [17] B.-Y. Xi, S.-H. Wang and F. Qi, Integral inequalities of Ostrowski type for two kinds of s-logarithmically convex functions, Georgian Math. J., 2024, 31(6), 1063–1071. Available online at http://dx.doi.org/10.1515/gmj-2024-2018. doi: 10.1515/gmj-2024-2018

    CrossRef Google Scholar

Article Metrics

Article views(56) PDF downloads(23) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint