Citation: | Marcin Massalski, Magdalena Nockowska-Rosiak. INVERSE-FREE NEWTON'S METHOD[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2238-2257. doi: 10.11948/20240428 |
We present a modification of Newton's method for finding a zero of a multivariable function without an inverse of a matrix in a recurrence. The aim of this paper is twofold: demonstrating at least quadratic convergence of a Newton-type method avoiding matrix inversion under standard assumptions, and then comparing modified and classical Newton's methods numerically.
[1] | I. K. Argyros, S. George, S. Regmi and C. I. Argyros, Hybrid Newton-like inverse free algorithms for solving nonlinear equations, Algorithms, 2024, 17(4), 154. doi: 10.3390/a17040154 |
[2] | I. K. Argyros, S. George, S. Shakhno, S. Regmi, M. Havdiak and M. I. Argyros, Asymptotically Newton-type methods without inverses for solving equations, Mathematics, 2024, 12(7), 1069. doi: 10.3390/math12071069 |
[3] | J. D. Blanchard and M. Chamberland, Newton's method without division, Amer. Math. Monthly, 2023, 130(7), 606–617. doi: 10.1080/00029890.2022.2093573 |
[4] | C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math. Comput., 1965, 19(92), 577–593. doi: 10.1090/S0025-5718-1965-0198670-6 |
[5] | C. Chun, Iterative methods improving Newton's method by the decomposition method, Comput. Math. Appl., 2005, 50(10–12), 1559–1568. |
[6] | A. Cordero and J. R. Torregrosa, Variants of Newton's method using fifth-order quadrature formulas, Appl. Math. Comput., 2007, 190, 686–698. |
[7] | M. Dallas and S. Pollock, Newton-Anderson at singular points, Int. J. Numer. Anal. Model., 2023, 20(5), 667–692. doi: 10.4208/ijnam2023-1029 |
[8] | D. W. Decker and C. T. Kelley, Expanded convergence domains for Newton's method at nearly singular roots, SIAM J. Sci. Stat. Comp., 1985, 6(4), 951–966. doi: 10.1137/0906064 |
[9] | A. Griewank, On solving nonlinear equations with simple singularities or nearly singular solutions, SIAM Rev., 1985, 27(4), 537–563. doi: 10.1137/1027141 |
[10] | H. H. H. Homeier, On Newton-type methods with cubic convergence, J. Comput. Appl. Math., 2005, 176(2), 425–432. doi: 10.1016/j.cam.2004.07.027 |
[11] | K. Jisheng, L. Yitian and W. Xiuhua, Third-order modification of Newton's method, J. Comput. Appl. Math., 2007, 205(1), 1–5. doi: 10.1016/j.cam.2006.03.022 |
[12] | C. T. Kelley and R. Suresh, A new acceleration method for Newton's method at singular points, SIAM J. Numer. Anal., 1983, 20(5), 1001–1009. doi: 10.1137/0720070 |
[13] | W. Kelley and A. Peterson, Difference Equations, An Introduction with Applications, 2nd ed., Harcourt/Academic Press, San Diego, 2001. |
[14] | Y. Levin and A. Ben-Israel, An inverse-free directional Newton method for solving systems of nonlinear equations, Progress in Analysis, 2003, 1447–1457. |
[15] | R. Lin, H. Ren, Q. Wu, Y. Khan and J. Hu, Convergence analysis of the modified Chebyshev's method for finding multiple roots. Vietnam J. Math., 2022, 50(1), 59–68. doi: 10.1007/s10013-020-00470-8 |
[16] | C. Ma, Y. Wu and Y. Xie, The Newton-type splitting iterative method for a class of coupled Sylvester-like absolute value equation, J. Appl. Anal. Comp., 2024, 14(6), 3306–3331. |
[17] | K. Madhu, D. K. R. Babajee and J. Jayaraman, An improvement to double-step Newton method and its multi-step version for solving system of nonlinear equations and its applications, Numer. Algorithms, 2017, 74(2), 593–607. doi: 10.1007/s11075-016-0163-2 |
[18] | J. J. Moré, B. S. Garbow and K. E. Hillstrom, Testing unconstrained optimization software, ACM Trans. Math. Software, 1981, 7(1), 17–41. doi: 10.1145/355934.355936 |
[19] | J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970. |
[20] | V. Pan and J. Reif, Efficient parallel solution of linear systems, in: Proceedings of the 17th ACM Symposium on Theory of Computing, December 1985, 1985. |
[21] | V. Pan and R. Schreiber, An improved Newton iteration for the generalized inverse of a matrix, with applications, SIAM J. Sci. Statist. Comput., 1991, 12(5), 1109–1130. doi: 10.1137/0912058 |
[22] | S. Pollock, Fast convergence to higher-multiplicity zeros, 2019, available as: arXiv: 1911.10647. |
[23] | S. Pollock and H. Schwartz, Benchmarking results for the Newton-Anderson method, Results Appl. Math., 2020, 8, Paper No. 100095. doi: 10.1016/j.rinam.2020.100095 |
[24] | A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, Texts in Applied Mathematics, Springer-Verlag, Berlin, Heidelberg, 2006. |
[25] | S. Qureshi, I. K. Argyros, H. Jafari, A. Soomro and K. Gdawiec, A highly accurate family of stable and convergent numerical solvers based on Daftardar-Gejji and Jafari decomposition technique for systems of nonlinear equations, MethodsX, 2024, 13, 102865. doi: 10.1016/j.mex.2024.102865 |
[26] | S. Qureshi, I. K. Argyros, A. Soomro, K. Gdawiec, A. A. Shaikh and E. Hincal, A new optimal root-finding iterative algorithm: Local and semilocal analysis with polynomiography, Numer. Algorithms, 2024, 95(4), 1715–1745. doi: 10.1007/s11075-023-01625-7 |
[27] | S. Qureshi, F. Chicharro, I. K. Argyros, A. Soomro, J. Alahmadi and E. Hincal, A new optimal numerical root-solver for solving systems of nonlinear equations using local, semi-local, and stability analysis, Axioms, 2024, 13, 341. doi: 10.3390/axioms13060341 |
[28] | G. W. Reddien, On Newton's method for singular problems, SIAM J. Numer. Anal., 1978, 15(5), 993–996. doi: 10.1137/0715064 |
[29] | G. W. Reddien, Newton's method and high order singularities, Comput. Math. Appl., 1979, 5(2), 79–86. doi: 10.1016/0898-1221(79)90061-0 |
[30] | G. Schulz, Iterative Berechnung der Reziproken matrix, Z. Angew. Math. Mech., 1933, 13(1), 57–59. doi: 10.1002/zamm.19330130111 |
[31] | Y.-Q. Shen and T. J. Ypma, Newton's method for singular nonlinear equations using approximate left and right nullspaces of the Jacobian, Appl. Numer. Math., 2005, 54(2), 256–265. doi: 10.1016/j.apnum.2004.09.029 |
[32] | M. Singh, A. K. Verma and R. Agarwal, On an iterative method for a class of 2 point & 3 point nonlinear SBVPs, J. Appl. Anal. Comput., 2019, 9(4), 1242–1260. |
[33] | E. Suli and D. F. Mayers, An Introduction to Numerical Analysis, Cambridge University Press, New York, 2003. |
[34] | F. Toutounian and F. Soleymani, An iterative method for computing the approximate inverse of a square matrix and the Moore-Penrose inverse of a non-square matrix, Appl. Math. Comput., 2013, 224, 671–680. |
[35] | S. Weerakoon and T. G. I. Fernando, A Variant of Newton's method with accelerated third-order convergence, Appl. Math. Lett., 2000, 13, 87–93. |
Comparison of the time of inversion and multiplication of matrices
Basins of attraction for the function
Basins of attraction for the function
Basins of attraction for the function
Basins of attraction for the function
Basins of attraction for the function
Basins of attraction for the function
Basins of attraction inverse-free Newton's method with the first modification for the function
Basins of attraction inverse-free Newton's method with the first modification for the function