2025 Volume 15 Issue 4
Article Contents

Yindi Zhang, Meng Zhao. DYNAMICS OF AN SIRS EPIDEMIC MODEL WITH TIME DELAY AND FREE BOUNDARIES[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2258-2284. doi: 10.11948/20240435
Citation: Yindi Zhang, Meng Zhao. DYNAMICS OF AN SIRS EPIDEMIC MODEL WITH TIME DELAY AND FREE BOUNDARIES[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2258-2284. doi: 10.11948/20240435

DYNAMICS OF AN SIRS EPIDEMIC MODEL WITH TIME DELAY AND FREE BOUNDARIES

  • In this paper, an SIRS epidemic model with time delay and free boundaries is studied. At first, we prove the global existence and uniqueness of the solution. And then we obtain criteria for spreading and vanishing. Moreover, the long-time behavior of the solution is given by a spreading-vanishing dichotomy. Finally, the numerical simulations are provided to illustrate our results. Our results indicate that the time delay can slow down the spreading of epidemic.

    MSC: 35K57, 35B40, 92D30
  • 加载中
  • [1] I. Ahn, S. Baek and Z. Lin, The spreading fronts of an infective environment in a man-environment-man epidemic model, Appl. Math. Model., 2016, 40(15–16), 7082–7101. doi: 10.1016/j.apm.2016.02.038

    CrossRef Google Scholar

    [2] R. M. Anderson and R. M. May, Population biology of infectious disease: Part I, Nature, 1979, 280(5721), 361–367. doi: 10.1038/280361a0

    CrossRef Google Scholar

    [3] E. Beretta, T. Hara and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay, Nonlinear Anal., 2001, 47(6), 4107–4115. doi: 10.1016/S0362-546X(01)00528-4

    CrossRef Google Scholar

    [4] J. F. Cao, Y. Du, F. Li and W. T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 2019, 277(8), 2772–2814. doi: 10.1016/j.jfa.2019.02.013

    CrossRef Google Scholar

    [5] Q. Chen, F. Li, Z. Teng and F. Wang, Global dynamics and asymptotic spreading speeds for a partially degenerate epidemic model with time delay and free boundaries, J. Dynam. Differential Equations, 2022, 34(2), 1209–1236. doi: 10.1007/s10884-020-09934-4

    CrossRef Google Scholar

    [6] Q. Chen, S. Tang, Z. Teng and F. Wang, Spreading dynamics of a diffusive epidemic model with free boundaries and two delays, European J. Appl. Math., 2023, 34(6), 1133–1169. doi: 10.1017/S0956792523000220

    CrossRef Google Scholar

    [7] K. L. Cooke, Stability analysis for a vector disease model, Rocky Mountain J. Math., 1979, 9(1), 31–42.

    Google Scholar

    [8] K. L. Cooke and P. Van Den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol., 1996, 35(2), 240–260. doi: 10.1007/s002850050051

    CrossRef Google Scholar

    [9] Y. Du, Z. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic enviroment, J. Funct. Anal., 2013, 265(9), 2089–2142. doi: 10.1016/j.jfa.2013.07.016

    CrossRef Google Scholar

    [10] Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 2010, 42(1), 377–405. Erratum: SIAM J. Math. Anal., 2013, 45(3), 1995–1996.

    Google Scholar

    [11] Y. Du and Z. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 2014, 19(10), 3105–3132.

    Google Scholar

    [12] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964.

    Google Scholar

    [13] H. W. Hethcote and P. Van Den Driessche, Two SIS epidemiological models with delays, J. Math. Biol., 2000, 40: 2-26. doi: 10.1007/s002850050002

    CrossRef Google Scholar

    [14] Y. Hu, X. Hao, X. Song and Y. Du, A free boundary problem for spreading under shifting climate, J. Differential Equations, 2020, 269(7), 5931–5958. doi: 10.1016/j.jde.2020.04.024

    CrossRef Google Scholar

    [15] H. Huang and M. Wang, The reaction-diffusion system for an SIR epidemic model with a free boundary, Discrete Contin. Dyn. Syst. Ser. B, 2015, 20(7), 2039–2050.

    Google Scholar

    [16] H. Huang and M. Wang, A nonlocal SIS epidemic problem with double free boundaries, Z. Angew. Math. Phys., 2019, 70(4), 109. doi: 10.1007/s00033-019-1156-5

    CrossRef Google Scholar

    [17] W. O. Kermack and A. G. Mckendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London A, 1927, 115, 700-721. doi: 10.1098/rspa.1927.0118

    CrossRef Google Scholar

    [18] K. I. Kim, Z. Lin and Q. Zhang, An SIR epidemic model with free boundary, Nonlinear Anal. Real World Appl., 2013, 14(5), 1992-2001. doi: 10.1016/j.nonrwa.2013.02.003

    CrossRef Google Scholar

    [19] Y. N. Kyrychko and K. B. Blyuss, Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate, Nonlinear Anal. Real World Appl., 2005, 6(3), 495-507. doi: 10.1016/j.nonrwa.2004.10.001

    CrossRef Google Scholar

    [20] Y. N. Kyrychko and K. B. Blyuss, Stability and bifurcations in an epidemic model with varying immunity period, Bull. Math. Biol., 2010, 72(2), 490-505. doi: 10.1007/s11538-009-9458-y

    CrossRef Google Scholar

    [21] L. Li, S. Liu and M. Wang, A viral propagation model with a nonlinear infection rate and free boundaries, Sci. China Math., 2021, 64(9), 1971-1992. doi: 10.1007/s11425-020-1680-0

    CrossRef Google Scholar

    [22] L. Li, W. Ni and M. Wang, Dynamical properties of a new SIR epidemic model, Discrete Contin. Dyn. Syst. Ser. S, 2023, 17(2), 690-707.

    Google Scholar

    [23] Z. Lin and H. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 2017, 75(6-7), 1381-1409. doi: 10.1007/s00285-017-1124-7

    CrossRef Google Scholar

    [24] J. Liu, Z. Guo and Y. Li, Spreading dynamics of a biological invasion model with free boundaries and time delay, Nonlinear Anal. Real World Appl., 2024, 76, 103925. doi: 10.1016/j.nonrwa.2023.103925

    CrossRef Google Scholar

    [25] Z. Ma, M. Song and Y. Takeuchi, Global stability of an SIR epidemic model with time delay, Appl. Math. Lett., 2004, 17, 1141-1145. doi: 10.1016/j.aml.2003.11.005

    CrossRef Google Scholar

    [26] J. Mena-Lorcat and H. W. Hethcote, Dynamic models of infectious diseases as regulators of population sizes, J. Math. Biol., 1992, 30(7), 693-716. doi: 10.1007/BF00173264

    CrossRef Google Scholar

    [27] B. Sounvoravong, S. Guo and Y. Bai, Bifurcation and stability of a diffusive SIRS epidemic model with time delay, Electron. J. Differential Equations, 2019, 21-82(45), 1-16.

    Google Scholar

    [28] N. Sun and J. Fang, Propagation dynamics of Fisher-KPP equation with time delay and free boundaries, Calc. Var. Partial Differential Equations, 2019, 58(4).

    Google Scholar

    [29] Y. Tang, B. Dai and Z. Li, Dynamics of a Lotka-Volterra weak competition model with delays and free boundaries, Z. Angew. Math. Phys., 2022, 73(4), 143. doi: 10.1007/s00033-022-01788-8

    CrossRef Google Scholar

    [30] M. Wang, On some free boundary problems of the prey-predator model, J. Differential Equations, 2014, 256(10), 3365-3394. doi: 10.1016/j.jde.2014.02.013

    CrossRef Google Scholar

    [31] M. Wang, The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differential Equations, 2015, 258(4), 1252-1266. doi: 10.1016/j.jde.2014.10.022

    CrossRef Google Scholar

    [32] M. Wang, Existence and uniqueness of solutions of free boundary problems in heterogeneous environments, Discrete Contin. Dyn. Syst. Ser. B, 2019. 24(2): 415-421. Erratum: Discrete Contin. Dyn. Syst. Ser. B, 2021, 27(9), 5179-5180.

    Google Scholar

    [33] M. Wang and J. Zhao, Free boundary problems for a Lotka-Volterra competition system, J. Dynam. Differential Equations, 2014, 26(3), 655-672. doi: 10.1007/s10884-014-9363-4

    CrossRef Google Scholar

    [34] M. Wang and J. Zhao, A free boundary problem for the predator-prey model with double free boundaries, J. Dynam. Differential Equations, 2017, 29(3), 957-979. doi: 10.1007/s10884-015-9503-5

    CrossRef Google Scholar

    [35] R. Wang and Y. Du, Long-time dynamics of a diffusive epidemic model with free boundaries, Discrete Contin. Dyn. Syst. Ser. B, 2021, 26(4), 2201-2238. doi: 10.3934/dcdsb.2020360

    CrossRef Google Scholar

    [36] L. Wen and X. Yang, Global stability of a delayed SIRS model with temporary immunity, Chaos Solitons Fractals, 2008, 38(1), 221-226. doi: 10.1016/j.chaos.2006.11.010

    CrossRef Google Scholar

    [37] H. Xu, Z. Lin and H. Zhu, On an age-structured juvenile-adult model with harvesting pulse in moving and heterogeneous environment, J. Differential Equations, 2024, 405, 36-75. doi: 10.1016/j.jde.2024.05.045

    CrossRef Google Scholar

    [38] R. Xu, Z. Ma and Z. Wang, Global stability of a delayed SIRS epidemic model with saturation incidence and temporary immunity, Comput. Math. Appl., 2010, 59(9), 3211-3221. doi: 10.1016/j.camwa.2010.03.009

    CrossRef Google Scholar

    [39] M. Zhao, The longtime behavior of an SIR epidemic model with free boundaries, Journal of Nonlinear Modeling and Analysis, 2024, 6(2), 476-484.

    Google Scholar

    [40] M. Zhao, Dynamics of a reaction-diffusion waterborne pathogen model with free boundaries, Nonlinear Anal. Real World Appl., 2024, 77, 104043. doi: 10.1016/j.nonrwa.2023.104043

    CrossRef Google Scholar

    [41] D. Zhu, Y. Xu and X. Li, On a partially degenerate reaction-advection-diffusion system with free boundary conditions, J. Appl. Anal. Comput., 2025, 15(1), 21-38.

    Google Scholar

Figures(6)

Article Metrics

Article views(107) PDF downloads(127) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint