Citation: | Shouguo Zhu, Gang Li. EXACT NULL CONTROLLABILITY OF A FRACTIONAL NONLOCAL DELAY EVOLUTION SYSTEM[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2285-2300. doi: 10.11948/20240438 |
We delve into the exact null controllability problem of a fractional nonlocal weighted delay abstract system. For this strategy, we launch the resolvent trick and the approximation solvability method to construct control-state approximation sequence pairs twice to explore the problem without involving the compactness of semigroups and nonlocal items and the Lipschitz restriction on nonlinear terms and nonlocal parts or the noncompactness measure condition. Our work extends and generalizes previous results about exact null controllability problems of all evolution systems. Moreover, a significant diffusion model is displayed to show the applicability and validity of our mentioned outcomes. Finally, the conclusion of this paper is offered.
[1] | H. M. Ahmed and J. R. Wang, Exact null controllability of Sobolev-type Hilfer fractional stochastic differential equations with fractional Brownian motion and Poisson jumps, Bull. Iran. Math. Soc., 2018, 44, 673-690. doi: 10.1007/s41980-018-0043-8 |
[2] | J. Andres and L. Górniewicz, Topological Fixed Point Principles for Boundary Value Problems, Kluwer Academic Publisher, Dordrecht, 2003. |
[3] | D. Araya and C. Lizama, Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 2008, 69, 3692-3705. doi: 10.1016/j.na.2007.10.004 |
[4] | E. Bajlekova, Fractional Evolution Equations in Banach Spaces, Ph. Thesis D. . University Press Facilities. Eindhoven University of Technology, 2001. |
[5] | K. Balachandran, P. Balasubramaniam and J. P. Dauer, Local null controllability of nonlinear functional differential systems in Banach spaces, J. Optim. Theory Appl., 1996, 88, 61-75. doi: 10.1007/BF02192022 |
[6] | M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals, 2002, 14, 433-440. doi: 10.1016/S0960-0779(01)00208-9 |
[7] | L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 1991, 162, 494-505. doi: 10.1016/0022-247X(91)90164-U |
[8] | R. F. Curtain and H. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, Springer-Verlag, New York, 1995. |
[9] | J. P. Dauer and P. Balasubramaniam, Null controllability of semilinear integrodifferential systems in Banach spaces, Appl. Math. Lett., 1977, 10, 117-123. |
[10] | J. P. Dauer and N. I. Mahmudov, Exact null controllability of semilinear integrodifferential systems in Hilbert spaces, J. Math. Anal. Appl., 2004, 299, 322-332. doi: 10.1016/j.jmaa.2004.01.050 |
[11] | Y. Ding and Y. Li, Finite-approximate controllability of impulsive $\psi$-Caputo fractional evolution equations with nonlocal conditions, Fract. Calc. Appl. Anal., 2023, 26, 1326-1358. doi: 10.1007/s13540-023-00164-1 |
[12] | M. L. Du and Z. H. Wang, Initialized fractional differential equations with Riemann-Liouville fractional-order derivative, Eur. Phys. J. Special Topics, 2011, 193, 49-60. doi: 10.1140/epjst/e2011-01380-8 |
[13] | Z. Fan, Characterization of compactness for resolvents and its applications, Appl. Math. Comput., 2014, 232, 60-67. |
[14] | X. L. Fu and Y. Zhang, Exact null controllability of non-autonomous functional evolution systems with nonlocal conditions, Acta Mathematica Scientia, 2013, 33, 747-757. doi: 10.1016/S0252-9602(13)60035-1 |
[15] | I. Haque, J. Ali and M. Malik, Controllability of fractional dynamical systems with $(k, \psi)$-Hilfer fractional derivative, J. Appl. Math. Comput., 2024, 70, 3033-3051. doi: 10.1007/s12190-024-02078-4 |
[16] | S. Ji, Approximate controllability of semilinear nonlocal fractional differential systems via an approximating method, Appl. Math. Comput., 2014, 236, 43-53. |
[17] | M. Kerboua, I. Bouacida and S. Segni, Null controllability of $\psi$-Hilfer implicit fractional integro-differential equations with $\psi$-Hilfer fractional nonlocal conditions, Evol. Equ. Control Theory, 2023, 12, 1473-1491. |
[18] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science B. V., Amsterdam 204, 2006. |
[19] | F. Li, J. Liang and H. Xu, Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions, J. Math. Anal. Appl., 2012, 391, 510-525. |
[20] | K. Li and J. Peng, Fractional resolvents and fractional evolution equations, Appl. Math. Lett., 2012, 25, 808-812. |
[21] | J. Liang, Y. Mu and T. Xiao, Nonlocal integro-differential equations of Sobolev type in Banach spaces involving $\psi$-Caputo fractional derivative, Banach J. Math. Anal., 2022, 16, Paper No. 3. |
[22] | Z. Liu and X. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives, SIAM J. Control Optim., 2015, 53, 1920-1933. |
[23] | F. Mainardi, A. Mura and G. Pagnini, The $M$-wright function in time-fractional diffusion processes: A tutorial survey, Int. J. Differ. Equ., 2010, Paper No. 104505, 29 pp. |
[24] | L. Malaguti, S. Perrotta and V. Taddei, $ L_{p}$-exact controllability of partial differential equations with nonlocal terms, Evol. Equ. Control Theory, 2022, 11, 1533-1564. |
[25] | L. Malaguti, S. Perrotta and V. Taddei, Exact controllability of infinite dimensional systems with controls of minimal norm, Topol. Methods Nonlinear Anal., 2019, 54, 1001-1021. |
[26] | Z. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. |
[27] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
[28] | J. Sabatier, C. Farges and J. C. Trigeassou, Fractional systems state space description: Some wrong ideas and proposed solutions, J. Vib. Control, 2014, 20, 1076-1084. |
[29] | W. R. Schneider, Completely monotone generalized Mittag-Leffler functions, Expo. Math., 1996, 14, 3-16. |
[30] | O. P. K. Sharma, R. K. Vats and A. Kumar, A note on existence and exact controllability of fractional stochastic system with finite delay, Int. J. Dynam. Control, 2024, 12, 180-189. |
[31] | O. P. K. Sharma, R. K. Vats and A. Kumar, New exploration on approximate controllability of fractional neutral-type delay stochastic differential inclusions with non-instantaneous impulse, Math. Meth. Appl. Sci., 2024, 47, 5161-5190. |
[32] | O. P. K. Sharma, R. K. Vats and A. Kumar, Existence and exact controllability results of nonlocal integro-differential neutral stochastic system with finite delay, J. Anal., 2024, 32, 573-595. |
[33] | H. Xu, V. Colao and L. Muglia, Mild solutions of nonlocal semilinear evolution equations on unbounded intervals via approximation solvability method in reflexive Banach spaces, J. Math. Anal. Appl., 2021, 498, Paper No. 124938. |
[34] | V. Yadav, R. K. Vats and A. Kumar, New exploration on the existence and null controllability of fractional Hilfer stochastic systems driven by Poisson jumps and fractional Brownian motion with non-instantaneous impulses, Int. J. Dyn. Control, 2024. DOI: 10.1007/s40435-024-01451-2. |
[35] | E. Zeidler, Nonlinear Functional Analysis and Its Application II/A, Springer, New York, 1990. |
[36] | Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comp. Math. Appl., 2010, 59, 1063-1077. |
[37] | Y. Zhou, J. R. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific, London, 2016. |
[38] | S. Zhu, Optimal controls for fractional backward nonlocal evolution systems, Numer. Funct. Anal. Optim., 2023, 44, 794-814. |
[39] | S. Zhu, P. Dai, Y. Qu and G. Li, Subordination principle and approximation of fractional resolvents and applications to fractional evolution equations, Fract. Calc. Appl. Anal., 2023, 26, 781-799. |
[40] | S. Zhu, Z. Fan and G. Li, Topological characteristics of solution sets for fractional evolution equations and applications to control systems, Topol. Methods Nonlinear Anal., 2019, 54, 177-202. |
[41] | S. Zhu and G. Li, Time optimal controls for Hilfer fractional nonlocal evolution systems without compactness and Lipschitz condition, Filomat, 2024, 38, 903-918. |
[42] | V. M. Zolotarev, One-Dimensional Stable Distributions, in: Translations of Mathematical Monographs, vol. 65, American Mathematical Society, Providence, R. I., 1986. |