2025 Volume 15 Issue 4
Article Contents

Shouguo Zhu, Gang Li. EXACT NULL CONTROLLABILITY OF A FRACTIONAL NONLOCAL DELAY EVOLUTION SYSTEM[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2285-2300. doi: 10.11948/20240438
Citation: Shouguo Zhu, Gang Li. EXACT NULL CONTROLLABILITY OF A FRACTIONAL NONLOCAL DELAY EVOLUTION SYSTEM[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2285-2300. doi: 10.11948/20240438

EXACT NULL CONTROLLABILITY OF A FRACTIONAL NONLOCAL DELAY EVOLUTION SYSTEM

  • Author Bio: Email: gli@yzu.edu.cn(G. Li)
  • Corresponding author: Email: sgzhu2015@163.com (S. Zhu) 
  • Fund Project: The work is supported by the NSF of China (11871064, 11771378), the NSF of the Jiangsu Higher Education Institutions (18KJB110019, 22KJB110024) and the key project of Wuxi Institute of Technology (JC2024-02)
  • We delve into the exact null controllability problem of a fractional nonlocal weighted delay abstract system. For this strategy, we launch the resolvent trick and the approximation solvability method to construct control-state approximation sequence pairs twice to explore the problem without involving the compactness of semigroups and nonlocal items and the Lipschitz restriction on nonlinear terms and nonlocal parts or the noncompactness measure condition. Our work extends and generalizes previous results about exact null controllability problems of all evolution systems. Moreover, a significant diffusion model is displayed to show the applicability and validity of our mentioned outcomes. Finally, the conclusion of this paper is offered.

    MSC: 34K37, 47D99, 93B05
  • 加载中
  • [1] H. M. Ahmed and J. R. Wang, Exact null controllability of Sobolev-type Hilfer fractional stochastic differential equations with fractional Brownian motion and Poisson jumps, Bull. Iran. Math. Soc., 2018, 44, 673-690. doi: 10.1007/s41980-018-0043-8

    CrossRef Google Scholar

    [2] J. Andres and L. Górniewicz, Topological Fixed Point Principles for Boundary Value Problems, Kluwer Academic Publisher, Dordrecht, 2003.

    Google Scholar

    [3] D. Araya and C. Lizama, Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 2008, 69, 3692-3705. doi: 10.1016/j.na.2007.10.004

    CrossRef Google Scholar

    [4] E. Bajlekova, Fractional Evolution Equations in Banach Spaces, Ph. Thesis D. . University Press Facilities. Eindhoven University of Technology, 2001.

    Google Scholar

    [5] K. Balachandran, P. Balasubramaniam and J. P. Dauer, Local null controllability of nonlinear functional differential systems in Banach spaces, J. Optim. Theory Appl., 1996, 88, 61-75. doi: 10.1007/BF02192022

    CrossRef Google Scholar

    [6] M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals, 2002, 14, 433-440. doi: 10.1016/S0960-0779(01)00208-9

    CrossRef Google Scholar

    [7] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 1991, 162, 494-505. doi: 10.1016/0022-247X(91)90164-U

    CrossRef Google Scholar

    [8] R. F. Curtain and H. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, Springer-Verlag, New York, 1995.

    Google Scholar

    [9] J. P. Dauer and P. Balasubramaniam, Null controllability of semilinear integrodifferential systems in Banach spaces, Appl. Math. Lett., 1977, 10, 117-123.

    Google Scholar

    [10] J. P. Dauer and N. I. Mahmudov, Exact null controllability of semilinear integrodifferential systems in Hilbert spaces, J. Math. Anal. Appl., 2004, 299, 322-332. doi: 10.1016/j.jmaa.2004.01.050

    CrossRef Google Scholar

    [11] Y. Ding and Y. Li, Finite-approximate controllability of impulsive $\psi$-Caputo fractional evolution equations with nonlocal conditions, Fract. Calc. Appl. Anal., 2023, 26, 1326-1358. doi: 10.1007/s13540-023-00164-1

    CrossRef Google Scholar

    [12] M. L. Du and Z. H. Wang, Initialized fractional differential equations with Riemann-Liouville fractional-order derivative, Eur. Phys. J. Special Topics, 2011, 193, 49-60. doi: 10.1140/epjst/e2011-01380-8

    CrossRef Google Scholar

    [13] Z. Fan, Characterization of compactness for resolvents and its applications, Appl. Math. Comput., 2014, 232, 60-67.

    Google Scholar

    [14] X. L. Fu and Y. Zhang, Exact null controllability of non-autonomous functional evolution systems with nonlocal conditions, Acta Mathematica Scientia, 2013, 33, 747-757. doi: 10.1016/S0252-9602(13)60035-1

    CrossRef Google Scholar

    [15] I. Haque, J. Ali and M. Malik, Controllability of fractional dynamical systems with $(k, \psi)$-Hilfer fractional derivative, J. Appl. Math. Comput., 2024, 70, 3033-3051. doi: 10.1007/s12190-024-02078-4

    CrossRef Google Scholar

    [16] S. Ji, Approximate controllability of semilinear nonlocal fractional differential systems via an approximating method, Appl. Math. Comput., 2014, 236, 43-53.

    Google Scholar

    [17] M. Kerboua, I. Bouacida and S. Segni, Null controllability of $\psi$-Hilfer implicit fractional integro-differential equations with $\psi$-Hilfer fractional nonlocal conditions, Evol. Equ. Control Theory, 2023, 12, 1473-1491.

    Google Scholar

    [18] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science B. V., Amsterdam 204, 2006.

    Google Scholar

    [19] F. Li, J. Liang and H. Xu, Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions, J. Math. Anal. Appl., 2012, 391, 510-525.

    Google Scholar

    [20] K. Li and J. Peng, Fractional resolvents and fractional evolution equations, Appl. Math. Lett., 2012, 25, 808-812.

    Google Scholar

    [21] J. Liang, Y. Mu and T. Xiao, Nonlocal integro-differential equations of Sobolev type in Banach spaces involving $\psi$-Caputo fractional derivative, Banach J. Math. Anal., 2022, 16, Paper No. 3.

    Google Scholar

    [22] Z. Liu and X. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives, SIAM J. Control Optim., 2015, 53, 1920-1933.

    Google Scholar

    [23] F. Mainardi, A. Mura and G. Pagnini, The $M$-wright function in time-fractional diffusion processes: A tutorial survey, Int. J. Differ. Equ., 2010, Paper No. 104505, 29 pp.

    Google Scholar

    [24] L. Malaguti, S. Perrotta and V. Taddei, $ L_{p}$-exact controllability of partial differential equations with nonlocal terms, Evol. Equ. Control Theory, 2022, 11, 1533-1564.

    Google Scholar

    [25] L. Malaguti, S. Perrotta and V. Taddei, Exact controllability of infinite dimensional systems with controls of minimal norm, Topol. Methods Nonlinear Anal., 2019, 54, 1001-1021.

    Google Scholar

    [26] Z. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

    Google Scholar

    [27] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    Google Scholar

    [28] J. Sabatier, C. Farges and J. C. Trigeassou, Fractional systems state space description: Some wrong ideas and proposed solutions, J. Vib. Control, 2014, 20, 1076-1084.

    Google Scholar

    [29] W. R. Schneider, Completely monotone generalized Mittag-Leffler functions, Expo. Math., 1996, 14, 3-16.

    Google Scholar

    [30] O. P. K. Sharma, R. K. Vats and A. Kumar, A note on existence and exact controllability of fractional stochastic system with finite delay, Int. J. Dynam. Control, 2024, 12, 180-189.

    Google Scholar

    [31] O. P. K. Sharma, R. K. Vats and A. Kumar, New exploration on approximate controllability of fractional neutral-type delay stochastic differential inclusions with non-instantaneous impulse, Math. Meth. Appl. Sci., 2024, 47, 5161-5190.

    Google Scholar

    [32] O. P. K. Sharma, R. K. Vats and A. Kumar, Existence and exact controllability results of nonlocal integro-differential neutral stochastic system with finite delay, J. Anal., 2024, 32, 573-595.

    Google Scholar

    [33] H. Xu, V. Colao and L. Muglia, Mild solutions of nonlocal semilinear evolution equations on unbounded intervals via approximation solvability method in reflexive Banach spaces, J. Math. Anal. Appl., 2021, 498, Paper No. 124938.

    Google Scholar

    [34] V. Yadav, R. K. Vats and A. Kumar, New exploration on the existence and null controllability of fractional Hilfer stochastic systems driven by Poisson jumps and fractional Brownian motion with non-instantaneous impulses, Int. J. Dyn. Control, 2024. DOI: 10.1007/s40435-024-01451-2.

    Google Scholar

    [35] E. Zeidler, Nonlinear Functional Analysis and Its Application II/A, Springer, New York, 1990.

    Google Scholar

    [36] Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comp. Math. Appl., 2010, 59, 1063-1077.

    Google Scholar

    [37] Y. Zhou, J. R. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific, London, 2016.

    Google Scholar

    [38] S. Zhu, Optimal controls for fractional backward nonlocal evolution systems, Numer. Funct. Anal. Optim., 2023, 44, 794-814.

    Google Scholar

    [39] S. Zhu, P. Dai, Y. Qu and G. Li, Subordination principle and approximation of fractional resolvents and applications to fractional evolution equations, Fract. Calc. Appl. Anal., 2023, 26, 781-799.

    Google Scholar

    [40] S. Zhu, Z. Fan and G. Li, Topological characteristics of solution sets for fractional evolution equations and applications to control systems, Topol. Methods Nonlinear Anal., 2019, 54, 177-202.

    Google Scholar

    [41] S. Zhu and G. Li, Time optimal controls for Hilfer fractional nonlocal evolution systems without compactness and Lipschitz condition, Filomat, 2024, 38, 903-918.

    Google Scholar

    [42] V. M. Zolotarev, One-Dimensional Stable Distributions, in: Translations of Mathematical Monographs, vol. 65, American Mathematical Society, Providence, R. I., 1986.

    Google Scholar

Article Metrics

Article views(89) PDF downloads(100) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint