Citation: | Tai-Jin Zhao, Chun Li. EXISTENCE ON GROUND STATE ROTATING PERIODIC SOLUTIONS FOR A CLASS OF $P$-HAMILTONIAN SYSTEMS[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2327-2339. doi: 10.11948/20240450 |
In this paper, we investigate the existence of ground state rotating periodic solutions for a class of $p$-Hamiltonian systems by variational methods in critical point theory.
[1] | A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14(4), 349–381. doi: 10.1016/0022-1236(73)90051-7 |
[2] | P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal., 1983, 7(9), 981–1012. doi: 10.1016/0362-546X(83)90115-3 |
[3] | G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A, 1978,112(2), 332–336. (in Italian). |
[4] | G. Chen and S. Ma, Ground state periodic solutions of second order Hamiltonian systems without spectrum $0$, Israel J. Math., 2013,198(1), 111–127. doi: 10.1007/s11856-013-0016-9 |
[5] | S. Chen, X. Tang and N. Zhang, Ground state solutions for the Chern-Simons-Schrödinger equation with zero mass potential, Differ. Integral Equ., 2022, 35(11–12), 767–794. |
[6] | X. Chen, W. Krawcewicz and H. Xiao, Ground state solutions and periodic solutions with minimal periods to second-order Hamiltonian systems, J. Math. Anal. Appl., 2023,518(2), 126715. doi: 10.1016/j.jmaa.2022.126715 |
[7] |
H. Haghshenas and G. A. Afrouzi, Three solutions for $p$-$H$amiltonian systems with impulsive effects, Kragujevac J. Math., 2013, 47(4), 499–509.
$p$- |
[8] | T. Heidari, R. Tavani and A. Nazari, Multiple periodic solutions for a class of $p$-$H$amiltonian systems, J. Indian Math. Soc. (N.S.), 2022, 89(3–4), 419–429. |
[9] | L.-X. Huang, X.-P. Wu and C.-L. Tang, Ground state solutions and multiple solutions for nonhomogeneous Schrödinger equations with Berestycki-Lions type conditions, Complex Var. Elliptic Equ., 2021, 66(10), 1717–1730. doi: 10.1080/17476933.2020.1779236 |
[10] | L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on $\mathbb{R}^N$, Proc. Roy. Soc. Edinburgh, 1999,129(4), 787–809. doi: 10.1017/S0308210500013147 |
[11] |
L. Jeanjean and K. Tanaka, A positive solution for an asymptotically linear elliptic problem on $\mathbb{R}^N$ autonomous at infinity, ESAIM Control Optim. Calc. Var., 2002, 7,597–614. doi: 10.1051/cocv:2002068
CrossRef $\mathbb{R}.N$ autonomous at infinity" target="_blank">Google Scholar |
[12] | P. Jebelean and N. S. Papageorgiou, On noncoercive periodic systems with vector $p$-Laplacian, Topol. Methods Nonlinear Anal., 2011, 38(2), 249–263. |
[13] | J.-C. Kang, X.-P. Chen and C.-L. Tang, Ground state solutions for Schrödinger-Poisson system with critical growth and nonperiodic potential, J. Math. Phys., 2022, 63(10), 101501. doi: 10.1063/5.0107298 |
[14] | J.-C. Kang and C.-L. Tang, Ground states for Chern-Simons-Schrödinger system with nonperiodic potential, J. Fixed Point Theory Appl., 2023, 25(1), 1–17. doi: 10.1007/s11784-022-00995-0 |
[15] |
C. Li, R. P. Agarwal and Z.-Q. Ou, Subharmonic solutions for a class of ordinary $p$-Laplacian systems, Lith. Math. J., 2018, 58(2), 157–166. doi: 10.1007/s10986-018-9393-4
CrossRef $p$-Laplacian systems" target="_blank">Google Scholar |
[16] |
C. Li, R. P. Agarwal and C.-L. Tang, Infinitely many periodic solutions for ordinary $p$-Laplacian systems, Adv. Nonlinear Anal., 2015, 4(4), 251–261. doi: 10.1515/anona-2014-0048
CrossRef $p$-Laplacian systems" target="_blank">Google Scholar |
[17] | C. Li, R. P. Agarwal, P. Yang and C.-L. Tang, Nonconstant periodic solutions for a class of ordinary $p$-$L$aplacian systems, Bound. Value Probl., 2016,213, 1–12. |
[18] |
C. Li, Z.-Q. Ou and C.-L. Tang, Three periodic solutions for $p$-$H$amiltonian systems, Nonlinear Anal., 2011, 74(5), 1596–1606. doi: 10.1016/j.na.2010.10.030
CrossRef $p$- |
[19] | J. Li, X. Chang and Y. Li, Rotating periodic solutions for second order systems with Hartman-type nonlinearity, Bound. Value. Probl., 2018, 37, 1–11. |
[20] | Q. Li, J. Zhang, W. Wang and K. Teng, Ground states for fractional Schrödinger equations involving critical or supercritical exponent, Appl. Anal., 2023,102(1), 52–64. doi: 10.1080/00036811.2021.1945045 |
[21] | F.-F. Liang, X.-P. Wu and C.-L. Tang, Ground state solutions for Schrödinger-KdV system with periodic potential, Qual. Theory Dyn. Syst., 2023, 22(1), 1–12. doi: 10.1007/s12346-022-00693-9 |
[22] | G. Liu, Y. Li and X. Yang, Rotating periodic solutions for asymptotically linear second-order Hamiltonian systems with resonance at infinity, Math. Methods Appl. Sci., 2017, 40(18), 7319–7150. |
[23] | G. Liu, Y. Li and X. Yang, Rotating periodic solutions for super-linear second order Hamiltonian systems, Appl. Math. Lett., 2018, 79, 73–79. doi: 10.1016/j.aml.2017.11.024 |
[24] |
G. Liu, Y. Li and X. Yang, Infinitely many rotating periodic solutions for second-order $H$amiltonian systems, J. Dyn. Control Syst., 2019, 25(2), 159–174. doi: 10.1007/s10883-018-9402-2
CrossRef $H$amiltonian systems" target="_blank">Google Scholar |
[25] | G. Liu, Y. Li and X. Yang, Existence and multiplicity of rotating periodic solutions for Hamiltonian systems with a general twist condition, J. Differential Equations, 2023,369,229–252. doi: 10.1016/j.jde.2023.06.001 |
[26] | J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, Springer-Verlag, New York, 1989. |
[27] | M. Schechter and W. Zou, Weak linking theorems and Schrödinger equations with critical Sobolev exponent, ESAIM Control Optim. Calc. Var., 2003, 9,601–619. doi: 10.1051/cocv:2003029 |
[28] | M. Struwe, The existence of surfaces of constant mean curvature with free boundaries, Acta Math., 1988,160(1–2), 19–64. |
[29] | M. Struwe, Variational Methods, Springer-Verlag, Berlin, 1996. |
[30] |
J. Xing, X. Yang and Y. Li, Rotating periodic solutions for convex $H$amiltonian systems, Appl. Math. Lett., 2019, 89, 91–96. doi: 10.1016/j.aml.2018.10.002
CrossRef $H$amiltonian systems" target="_blank">Google Scholar |
[31] | T. Ye, W. Liu and T. Shen, Existence of nontrivial rotating periodic solutions for second-order $H$amiltonian systems, Appl. Math. Lett., 2023,142(8), 108630. |
[32] | Y.-W. Ye and C.-L. Tang, Periodic solutions for second order Hamiltonian systems with general superquadratic potential, Bull. Belg. Math. Soc. Simon Stevin., 2014, 21(1), 1–18. |
[33] | L. Zhang, X. Tang and S. Chen, Nehari type ground state solutions for periodic Schrödinger-Poisson systems with variable growth, Complex Var. Elliptic Equ., 2022, 67(4), 856–871. doi: 10.1080/17476933.2020.1843643 |