Citation: | Yue Wu, Shuixian Yan, Yueming Gu, Yan Zhang. ON THE EQUIVALENCE OF THE EFFECTIVE DEGREE NETWORK MODEL AND DYNAMICAL SURVIVAL ANALYSIS MODEL[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2340-2355. doi: 10.11948/20240466 |
We delve into the existing effective degree model and dynamical survival analysis model for network epidemic dynamics. By employing the integrating factor method, we elaborate on the mutual derivation process between the two models, demonstrating their equivalence. Leveraging this result, the effective degree model is simplified to an equation that only involves susceptible individuals.
[1] | L. Cai, J. Liu, G. Fan and H. Chen, Lobal dynamics of a cholera model with age-of-immunity structure and reinfection, Journal of Applied Analysis & Computation, 2019, 9(5), 1731–1749. |
[2] | L. Decreusefond, J. S. Dhersin, P. Moyal and V. C. Tran, Large graph limit for an SIR process in random network with heterogeneous connectivity, Annals of Applied Probability, 2012, 22(2), 541–575. |
[3] | K. T. D. Eames and M. J. Keeling, Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases, Proceedings of the National Academy of Sciences, 2008, 99(20), 13330–13335. |
[4] | J. Ge, Z. Lin and H. Zhu, Modeling the spread of west nile virus in a spa-tially heterogeneous and advective environment, Journal of Applied Analysis & Computation, 2021, 11(4), 1868–1897. |
[5] | K. A. Jacobsen, M. G. Burch, J. H. Tien and G. A. Rempala, The large graph limit of a stochastic epidemic model on a dynamic multilayer network, Journal of Biological Dynamics, 2018, 12(1), 746–788. doi: 10.1080/17513758.2018.1515993 |
[6] | Z. Jin, S. Li, X. Zhang, J. Zhang and X. Peng, Epidemiological modeling on complex networks, Complex Systems and Networks: Dynamics, Controls and Applications, 2016, 51–77. |
[7] | M. J. Keeling, The effects of local spatial structure on epidemiological invasions, Proceedings of the Royal Society of London. Series B: Biological Sciences, 1999, 266(1421), 859–867. doi: 10.1098/rspb.1999.0716 |
[8] | W. R. KhudaBukhsh, C. D. Bastian, M. Wascher, C. Klaus, S. Y. Sahai, M. Weir, E. Kenah, E. Root, J. H. Tien and G. Rem-Pala, Projecting COVID-19 cases and subsequent hospital burden in Ohio, Journal of Theoretical Biology, 2023, 561, 111404. doi: 10.1016/j.jtbi.2022.111404 |
[9] | W. R. KhudaBukhsh, B. Choi, E. Kenah and G. A. Rempala, Survival dynamical systems: Individual-level survival analysis from population-level epidemic models, Interface Focus, 2020, 10(1). DOI: 10.1098/rsfs.2019.0048. |
[10] | I. Z. Kiss, L. Berthouze and W. R. KhudaBukhsh, Towards inferring network properties from epidemic data, Bulletin of Mathematical Biology, 2024, 86(1), 6. doi: 10.1007/s11538-023-01235-3 |
[11] | I. Z. Kiss, I. Iacopini, P. L. Simon and N. Georgiou, Insights from exact social contagion dynamics on networks with higher-order structures, Journal of Complex Networks, 2023, 11(6), 044. |
[12] | I. Z. Kiss, E. Kenah and G. A. Rempala, Necessary and sufficient conditions for exact closures of epidemic equations on configuration model networks, Journal of Mathematical Biology, 2023, 87(2), 36. doi: 10.1007/s00285-023-01967-9 |
[13] | I. Z. Kiss, J. C. Miller and P. L. Simon, Mathematics of Epidemics on Networks, Springer, 2017. |
[14] | F. D. Lauro, W. R. KhudaBukhsh, I. Z. Kiss, E. Kenah, M. Jensen and G. A. Rempala, Dynamic survival analysis for non-Markovian epidemic models, Journal of The Royal Society Interface, 2022, 19(191), 20220124. doi: 10.1098/rsif.2022.0124 |
[15] | J. Lindquist, J. Ma, P. V. Driessche and F. H. Willeboordse, Effective degree network disease models, Journal of Mathematical Biology, 2011, 62, 143–164. doi: 10.1007/s00285-010-0331-2 |
[16] | J. C. Miller, A primer on the use of probability generating functions in infectious disease modeling, Infectious Disease Modelling, 2018, 3, 192–248. doi: 10.1016/j.idm.2018.08.001 |
[17] | J. C. Miller and I. Z. Kiss, Epidemic spread in networks: Existing methods and current challenges, Mathematical Modelling of Natural Phenomena, 2014, 9(2), 4–42. doi: 10.1051/mmnp/20149202 |
[18] | M. Molloy and B. Reed, A critical point for random graphs with a given degree sequence, Random Structures & Algorithms, 1995, 6(2–3), 161–180. |
[19] | M. E. J. Newman, Spread of epidemic disease on networks, Physical Review E, 2002, 66(1), 016128. doi: 10.1103/PhysRevE.66.016128 |
[20] | M. E. J. Newman, S. H. Strogatz and D. J. Watts, Random graphs with arbitrary degree distributions and their applications, Physical Review E, 2001, 64(2), 026118. doi: 10.1103/PhysRevE.64.026118 |
[21] | R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Physical Review Letters, 2001, 86(14), 3200. doi: 10.1103/PhysRevLett.86.3200 |
[22] | D. A. Rand, Correlation Equations and Pair Approximations for Spatial Ecologies, Blackwell Publishing Ltd, 2009. |
[23] | E. Volz, SIR dynamics in random networks with heterogeneous connectivity, Journal of Mathematical Biology, 2008, 56, 293–310. doi: 10.1007/s00285-007-0116-4 |
[24] | Y. Yang, T. Q. S. Abdullah, G. Huang and Y. Dong, Mathematical analysis of SIR epidemic model with piecewise infection rate and control strategies, Journal of Nonlinear Modeling and Analysis, 2023, 5(3), 524–539. |