Citation: | Yuan Chang, Liqin Zhao. BIFURCATIONS OF LIMIT CYCLES IN A CLASS OF QUARTIC PLANAR VECTOR FIELDS[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2356-2380. doi: 10.11948/20240470 |
This paper studies the number and the distribution of limit cycles of a class of planar quartic vector fields
$ \dot{x}=-y(ay^2-1)+\varepsilon p(x, y),\; \; \dot{y}=x(ax^2-\sqrt{a}x-1)+\varepsilon q(x, y), $
where $ a>0 $, $ 0<\varepsilon\ll 1 $, $ p(x,y) $ and $ q(x,y) $ are polynomials in $ (x,y) $ of the degree $ 4 $. By the bifurcation theory and qualitative analysis, we obtain four new configurations of limit cycles, two of which can have at least $ 12 $ limit cycles.
[1] | Y. R. Carvalho, L. P. C. Da Cruz and L. F. S. Gouveia, New lower bound for the Hilbert number in low degree Kolmogorov systems, Chaos Solitons Fractals, 2023, 175, 113937. doi: 10.1016/j.chaos.2023.113937 |
[2] | S. N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, New York, 1994. |
[3] | C. J. Christopher and N. G. Lloyd, Polynomial systems: A lower bound for the Hilbert numbers, Proc. Roy. Soc. London Ser. A, 1995, 450(1938), 219-224. doi: 10.1098/rspa.1995.0081 |
[4] | R. D. Euzébio, J. Llibre and D. J. Tonon, Lower bounds for the number of limit cycles in a generalised Rayleigh-Liénard oscillator, Nonlinearity, 2022, 35(8), 3883-3906. doi: 10.1088/1361-6544/ac7691 |
[5] | L. Gavrilov and I. D. Iliev, The limit cycles in a generalized Rayleigh-Liénard oscillator, Discrete Contin. Dyn. Syst., 2023, 43(6), 2381-2400. doi: 10.3934/dcds.2023014 |
[6] | W. Geng, M. Han, Y. Tian and A Ke, Heteroclinic bifurcation of limit cycles in perturbed cubic Hamiltonian systems by higher-order analysis, J. Diff. Eqs., 2023, 357, 412-435. doi: 10.1016/j.jde.2023.02.027 |
[7] | J. Giné, L. F. S. Gouveia and J. Torregrosa, Lower bounds for the local cyclicity for families of centers, J. Diff. Eqs., 2021, 275, 309-331. doi: 10.1016/j.jde.2020.11.035 |
[8] | M. Han, Cyclicity of planar homoclinic loops and quadratic integrable systems, Sci. China Ser. A, 1997, 40(12), 1247-1258. doi: 10.1007/BF02876370 |
[9] | M. Han and J. Chen, On the number of limit cycles in double homoclinic bifurcations, Sci. China Ser. A, 2000, 43(9), 914-928. doi: 10.1007/BF02879797 |
[10] | M. Han, S. Hu and X. Liu, On the stability of double homoclinic and heteroclinic cycles, Nonlinear Anal., 2003, 53(5), 701-713. doi: 10.1016/S0362-546X(02)00301-2 |
[11] | M. Han and J. Li, Lower bounds for the Hilbert number of polynomial systems, J. Diff. Eqs., 2012, 252, 3278-3304. doi: 10.1016/j.jde.2011.11.024 |
[12] | M. Han, D. Shang, W. Zheng and P. Yu, Bifurcation of limit cycles in a fourth-order near-Hamiltonian system, Internat. J. Bifur. Chaos, 2007, 17(11), 4117-4144. doi: 10.1142/S0218127407019895 |
[13] | M. Han, J. Yang and J. Li, General study on limit cycle bifurcation near a double homoclinic loop, J. Diff. Eqs., 2023, 347, 1-23. doi: 10.1016/j.jde.2022.11.031 |
[14] | M. Han and Z. Zhang, Cyclicity 1 and 2 conditions for a 2-polycycle of integrable systems on the plane, J. Diff. Eqs., 1999, 155, 245-261. doi: 10.1006/jdeq.1998.3585 |
[15] | C. Li, C. Liu and J. Yang, A cubic system with thirteen limit cycles, J. Diff. Eqs., 2009, 246, 3609-3619. doi: 10.1016/j.jde.2009.01.038 |
[16] | J. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifur. Chaos, 2003, 13(1), 47-106. doi: 10.1142/S0218127403006352 |
[17] | J. Li and Y. Liu, New results on the study of $Z_q$-equivariant planar polynomial vector fields, Qual. Theory Dyn. Syst., 2010, 9(1-2), 167-219. doi: 10.1007/s12346-010-0024-7 |
[18] | S. Liu and M. Han, Bifurcation theory of limit cycles by higher order Melnikov functions and applications, J. Diff. Eqs., 2024, 403, 29-66. doi: 10.1016/j.jde.2024.04.036 |
[19] | J. Llibre, Some families of quadratic systems with at most one limit cycle, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2023, 101(1), 8-15. |
[20] | P. Yu and M. Han, Small limit cycles bifurcating from fine focus points in cubic order Z2-equivariant vector fields, Chaos Solitons Fractals, 2005, 24(1), 329-348. doi: 10.1016/S0960-0779(04)00599-5 |
[21] | H. Zang, W. Chen and T. Zhang, Perturbation from a cubic Hamiltonian with three figure eight-loops, Chaos Solitons Fractals, 2004, 22(1), 61-74. doi: 10.1016/j.chaos.2003.12.061 |
[22] | H. Zang, T. Zhang and M. Han, The number and distributions of limit cycles for a class of cubic near-Hamiltonian systems, J. Math. Anal. Appl., 2006, 316(2), 679-696. doi: 10.1016/j.jmaa.2005.04.085 |
[23] | T. Zhang, M. Han, H. Zang and X. Meng, Bifurcations of limit cycles for a cubic Hamiltonian system under quartic perturbations, Chaos Solitons Fractals, 2004, 22(5), 1127-1138. doi: 10.1016/j.chaos.2004.03.028 |
(a), (b): The configuration of 12 limit cycles, (c) The configuration of 9 limit cycles, (d) The configuration of 11 limit cycles.
The phase portrait of system (2.1).
The configuration of 12 limit cycles in Theorem 1.1(ⅰ).
The configuration of 12 or 11 limit cycles in Theorem 1.1(ⅱ).
The configuration of 9 limit cycles in Theorem 1.1(ⅲ).