Citation: | Boling Guo, Yueyang Feng. ORBITAL STABILITY OF SOLITARY WAVES TO THE COUPLED SCHRÖDINGER-BBM EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2381-2391. doi: 10.11948/20240471 |
This paper investigated the orbital stability of the solitary waves of the coupled Schrödinger-BBM equation through abstract theoretical results and detailed spectral analysis. First, we derived the explicit exact solitary wave solutions of the coupled Schrödinger-BBM equation. Then, using the orbital stability theory developed by Grillakis et al., we established general criteria for assessing the orbital stability of these solitary waves.
[1] | T. Cazenave and P. Lions, Orbital stability of standing waves for the nonlinear derivative Schrödinger equation, Commun. Math. Phys., 1982, 85, 549-561. doi: 10.1007/BF01403504 |
[2] | A. Constantin and W. Strauss, Stability of peakons, Comm. Pure Appl. Math., 2000, 53(5), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L |
[3] | A. Constantin and W. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear Sci., 2002, 12(4), 415-422. doi: 10.1007/s00332-002-0517-x |
[4] | L. Cui, Existence, orbital stability and instability of solitary waves for coupled BBM Equations, Acta Math. Appl. Sin. E., 2009, 25(1), 1-10. |
[5] | Q. Gao, Q. Wang and X. Chang, Normalized ground state solutions of Schrödinger-KdV system in R3, Z. Angew. Math. Phys., 2024, 75(6). DOI: 10.1007/s00033-024-02330-8. |
[6] | M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 1987, 74, 160-197. doi: 10.1016/0022-1236(87)90044-9 |
[7] | M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry Ⅱ, J. Funct. Anal., 1990, 94, 308-348. doi: 10.1016/0022-1236(90)90016-E |
[8] | B. Guo, The global solution for coupled system of Schrödinger-BBM equations, Chinese J. Eng. Math., 1987, 1, 1. |
[9] | B. Guo and Q. Guo. The smooth solutions of a class of coupled kdv equations, J. Appl. Anal. Comput., 2024, 14(5), 2505-2522. |
[10] | B. Guo, C. Miao and H. Huang, Global flow generated by coupled system of Schrödinger-BBM equations, Sci. China Ser. A Math. Phys. Astron., 1998, 41(2), 131-138. doi: 10.1007/BF02897438 |
[11] | B. Guo and J. Wu, Well-posedness of initial-boundary value problem for a coupled Benjamin-Bona-Mahony-Schrödinger system, Math. Meth. Appl. Sci., 2021, 44(17), 13213-13226. doi: 10.1002/mma.7619 |
[12] | B. Guo, Y. Xiao and Y. Ban, Orbital stability of solitary waves for the nonlinear Schrödinger-KdV system, J. Appl. Anal. Comput., 2022, 12(1), 245-255. |
[13] | S. Hong, W. Zhang, Y. Guo and X. Ling, Orbital stability of periodic wave solution for Eckhaus-Kundu equation, Phys. Scri., 2023, 98(12), 125237. doi: 10.1088/1402-4896/ad0c19 |
[14] | T. Luo, Orbital stability of the trains of peaked solitary waves for the modified Camassa-Holm-Novikov equation, Adv. Nonlinear Anal., 2024, 13(1), 20230124. doi: 10.1515/anona-2023-0124 |
[15] | M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, New York, 1978. |
[16] | Y. Xiao, B. Guo and Z. Wang, Nonlinear stability of multi-solitons for the Hirota equation, J. Diff. Equa., 2023, 342, 369-417. doi: 10.1016/j.jde.2022.10.016 |
[17] | L. Zhang, The Benjamin-Ono-Burgers equation: New ideas and new results, J. Nonlinear Mode. Anal., 2024, 6, 841-872. |
[18] | W. Zhang, X. Li, S. Li and X. Chen, Orbital stability of solitary waves for generalized Boussinesq equation with two nonlinear terms, Commun. Nonlinear SCI., 2018, 59, 629-650. |
[19] | R. Zheng, Orbital stability of solitary waves for a two-component Novikov system, Ann. Mat. Pur. Appl., 2024, 203(3), 1025-1035. |