Citation: | Siyi Zhang. THE EXISTENCE OF GLOBAL ATTRACTIVE SOLUTIONS FOR A CLASS OF TEMPERED FRACTIONAL DIFFUSION EQUATIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2714-2725. doi: 10.11948/20240486 |
This paper is devoted to the existence and attractiveness of solutions for a class of fractional diffusion equations with slow growth characteristics. The existence of global attractive solutions for this equation is established by the generalized Ascoli-Arzelà theorem. Our results reveal some characteristics of the solutions of the fractional diffusion equations with tempered fractional derivative, and extend the relevant results in existing literature.
[1] | J. Banas and D. O'Regan, On existence and local attractivity of solutions of solutions of a quadratic Volterra integral equation of fractional order, J. Math. Anal. Appl., 2008, 345(1), 573–582. doi: 10.1016/j.jmaa.2008.04.050 |
[2] | J. Beaudin and C. Li, Application of a matrix Mittag-Leffler function to the fractional partial integro-differential equation in $R^n$, J. Math. Comput. Sci., 2024, 33(4), 420–430. doi: 10.22436/jmcs.033.04.08 |
[3] | F. Chen, J. J. Nieto and Y. Zhou, Global attractivity for nonlinear fractional differential equations, Nonlinear Anal. Real World Appl., 2012, 13(1), 287–298. doi: 10.1016/j.nonrwa.2011.07.034 |
[4] | M. Chen and W. Deng, A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation, Appl. Math. Letters, 2017, 68, 87–93. doi: 10.1016/j.aml.2016.12.010 |
[5] | K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer, 2010. |
[6] | M. E. I. El-Gendy, On the solutions set of non-local Hilfer fractional orders of an Ito stochastic differential equation, J. Math. Comput. Sci.-JM. 2024, 35(2), 149–168. doi: 10.22436/jmcs.035.02.03 |
[7] | W. Guo, A generalization and application of Ascoli-Arzela theorem, J. Sys. Sci. & Math. Scis., 2002, 22(1), 115–122. |
[8] | J. W. He, Y. Zhou, L. Peng and B. Ahmad, On well-posedness of semilinear Rayleigh-Stokes problem with fractional derivative on $R^N$, Adv. Nonlinear Anal., 2022, 11, 580–597. |
[9] | S. M. Al-Issa, A. M. A. El-Sayed, I. H. Kaddoura and F. H. Sheet, Qualitative study on $\psi$-Caputo fractional differential inclusion with non-local conditions and feedback control, J. Math. Comput. Sci., 2024, 34(3), 295–312. doi: 10.22436/jmcs.034.03.08 |
[10] | T. D. Ke and N. N. Quan, Finite-time attractivity for semilinear tempered fractional wave equations, Fract. Calc. Appl. Anal., 2018, 21(6), 1471–1492. doi: 10.1515/fca-2018-0077 |
[11] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: in North-Holland Mathematics Studies, Vol. 204, Elsevier, 2006. |
[12] | A. Liemert and A. Klenle, Fundamental solution of the tempered fractional diffusion equation, J. Math. Phys., 2015, 56, 113504. doi: 10.1063/1.4935475 |
[13] | J. Losada, J. J. Nieto and E. Pourhadi, On the attractivity of solutions for a class of multiterm fractional functional differential equations, J. Comput. Appl. Math., 2017, 312, 2–12. doi: 10.1016/j.cam.2015.07.014 |
[14] | F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fract., 1996, 7(9), 1461–1477. doi: 10.1016/0960-0779(95)00125-5 |
[15] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
[16] | E. Pourhadi, R. Saadati and J. J. Nieto, On the attractivity of the solutions of a problem involving Hilfer fractional derivative via the measure of noncompactness, Fixed Point Theory, 2023, 24(1), 343366. |
[17] | F. Sabzikar, M. M. Meerschaert and J. Chen, Tempered fractional calculus, J. Comput. Phy., 2015, 293, 14–28. doi: 10.1016/j.jcp.2014.04.024 |
[18] | K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 2011, 382(1), 426–447. doi: 10.1016/j.jmaa.2011.04.058 |
[19] | H. T. Tuan, Separation of solutions and the attractivity of fractional-order positive linear delay systems with variable coefficients, Commun. Nonlinear Sci. Numer. Sim., 2024, 132, 107899. doi: 10.1016/j.cnsns.2024.107899 |
[20] | N. H. Tuan, L. N. Huynh, T. B. Ngoc and Y. Zhou, On a backward problem for nonlinear fractional diffusion equations, Appl. Math. Letters, 2019, 92, 76–84. doi: 10.1016/j.aml.2018.11.015 |
[21] | N. H. Tuan, L. D. Long, V. T. Nguyen and T. Tran, On a final value problem for the time-fractional diffusion equation with inhomogeneous source, Inverse Probl. Sci. Eng., 2017, 25(9), 1367–1395. doi: 10.1080/17415977.2016.1259316 |
[22] | D. Vivek, K. Kanagarajan and E. M. Elsayed, Attractivity and Ulam-Hyers stability results for fractional delay differential equations, Filomat, 2022, 36(17), 5707–5724. doi: 10.2298/FIL2217707V |
[23] | Y. Zhou, Attractivity for fractional evolution equations with almost sectorial operators, Fract. Calc. Appl. Anal., 2018, 21(3), 786–800. doi: 10.1515/fca-2018-0041 |
[24] | Y. Zhou, Attractivity for fractional differential equations in Banach space, Appl. Math. Letters, 2018, 75, 1–6. doi: 10.1016/j.aml.2017.06.008 |
[25] | Y. Zhou and J. W. He, A Cauchy problem for fractional evolution equations with Hilfer's fractional derivative on semi-infinite interval, Fract. Calc. Appl. Anal., 2022, 25, 924–961. doi: 10.1007/s13540-022-00057-9 |
[26] | Y. Zhou, J. W. He, B. Ahmad and A. Alsaedi, Existence and attractivity for fractional evolution equations, Discrete Dyn. Nat. Soc., 2018, 1070713. |
[27] | T. Zhu, Global attractivity for fractional differential equations of Riemann-Liouville type, Fract. Calc. Appl. Anal., 2023, 26, 2264–2280. doi: 10.1007/s13540-023-00187-8 |