2025 Volume 15 Issue 5
Article Contents

Siyi Zhang. THE EXISTENCE OF GLOBAL ATTRACTIVE SOLUTIONS FOR A CLASS OF TEMPERED FRACTIONAL DIFFUSION EQUATIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2714-2725. doi: 10.11948/20240486
Citation: Siyi Zhang. THE EXISTENCE OF GLOBAL ATTRACTIVE SOLUTIONS FOR A CLASS OF TEMPERED FRACTIONAL DIFFUSION EQUATIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2714-2725. doi: 10.11948/20240486

THE EXISTENCE OF GLOBAL ATTRACTIVE SOLUTIONS FOR A CLASS OF TEMPERED FRACTIONAL DIFFUSION EQUATIONS

  • This paper is devoted to the existence and attractiveness of solutions for a class of fractional diffusion equations with slow growth characteristics. The existence of global attractive solutions for this equation is established by the generalized Ascoli-Arzelà theorem. Our results reveal some characteristics of the solutions of the fractional diffusion equations with tempered fractional derivative, and extend the relevant results in existing literature.

    MSC: 26A33, 35R11
  • 加载中
  • [1] J. Banas and D. O'Regan, On existence and local attractivity of solutions of solutions of a quadratic Volterra integral equation of fractional order, J. Math. Anal. Appl., 2008, 345(1), 573–582. doi: 10.1016/j.jmaa.2008.04.050

    CrossRef Google Scholar

    [2] J. Beaudin and C. Li, Application of a matrix Mittag-Leffler function to the fractional partial integro-differential equation in $R^n$, J. Math. Comput. Sci., 2024, 33(4), 420–430. doi: 10.22436/jmcs.033.04.08

    CrossRef Google Scholar

    [3] F. Chen, J. J. Nieto and Y. Zhou, Global attractivity for nonlinear fractional differential equations, Nonlinear Anal. Real World Appl., 2012, 13(1), 287–298. doi: 10.1016/j.nonrwa.2011.07.034

    CrossRef Google Scholar

    [4] M. Chen and W. Deng, A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation, Appl. Math. Letters, 2017, 68, 87–93. doi: 10.1016/j.aml.2016.12.010

    CrossRef Google Scholar

    [5] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer, 2010.

    Google Scholar

    [6] M. E. I. El-Gendy, On the solutions set of non-local Hilfer fractional orders of an Ito stochastic differential equation, J. Math. Comput. Sci.-JM. 2024, 35(2), 149–168. doi: 10.22436/jmcs.035.02.03

    CrossRef Google Scholar

    [7] W. Guo, A generalization and application of Ascoli-Arzela theorem, J. Sys. Sci. & Math. Scis., 2002, 22(1), 115–122.

    Google Scholar

    [8] J. W. He, Y. Zhou, L. Peng and B. Ahmad, On well-posedness of semilinear Rayleigh-Stokes problem with fractional derivative on $R^N$, Adv. Nonlinear Anal., 2022, 11, 580–597.

    Google Scholar

    [9] S. M. Al-Issa, A. M. A. El-Sayed, I. H. Kaddoura and F. H. Sheet, Qualitative study on $\psi$-Caputo fractional differential inclusion with non-local conditions and feedback control, J. Math. Comput. Sci., 2024, 34(3), 295–312. doi: 10.22436/jmcs.034.03.08

    CrossRef Google Scholar

    [10] T. D. Ke and N. N. Quan, Finite-time attractivity for semilinear tempered fractional wave equations, Fract. Calc. Appl. Anal., 2018, 21(6), 1471–1492. doi: 10.1515/fca-2018-0077

    CrossRef Google Scholar

    [11] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: in North-Holland Mathematics Studies, Vol. 204, Elsevier, 2006.

    Google Scholar

    [12] A. Liemert and A. Klenle, Fundamental solution of the tempered fractional diffusion equation, J. Math. Phys., 2015, 56, 113504. doi: 10.1063/1.4935475

    CrossRef Google Scholar

    [13] J. Losada, J. J. Nieto and E. Pourhadi, On the attractivity of solutions for a class of multiterm fractional functional differential equations, J. Comput. Appl. Math., 2017, 312, 2–12. doi: 10.1016/j.cam.2015.07.014

    CrossRef Google Scholar

    [14] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fract., 1996, 7(9), 1461–1477. doi: 10.1016/0960-0779(95)00125-5

    CrossRef Google Scholar

    [15] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    Google Scholar

    [16] E. Pourhadi, R. Saadati and J. J. Nieto, On the attractivity of the solutions of a problem involving Hilfer fractional derivative via the measure of noncompactness, Fixed Point Theory, 2023, 24(1), 343366.

    Google Scholar

    [17] F. Sabzikar, M. M. Meerschaert and J. Chen, Tempered fractional calculus, J. Comput. Phy., 2015, 293, 14–28. doi: 10.1016/j.jcp.2014.04.024

    CrossRef Google Scholar

    [18] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 2011, 382(1), 426–447. doi: 10.1016/j.jmaa.2011.04.058

    CrossRef Google Scholar

    [19] H. T. Tuan, Separation of solutions and the attractivity of fractional-order positive linear delay systems with variable coefficients, Commun. Nonlinear Sci. Numer. Sim., 2024, 132, 107899. doi: 10.1016/j.cnsns.2024.107899

    CrossRef Google Scholar

    [20] N. H. Tuan, L. N. Huynh, T. B. Ngoc and Y. Zhou, On a backward problem for nonlinear fractional diffusion equations, Appl. Math. Letters, 2019, 92, 76–84. doi: 10.1016/j.aml.2018.11.015

    CrossRef Google Scholar

    [21] N. H. Tuan, L. D. Long, V. T. Nguyen and T. Tran, On a final value problem for the time-fractional diffusion equation with inhomogeneous source, Inverse Probl. Sci. Eng., 2017, 25(9), 1367–1395. doi: 10.1080/17415977.2016.1259316

    CrossRef Google Scholar

    [22] D. Vivek, K. Kanagarajan and E. M. Elsayed, Attractivity and Ulam-Hyers stability results for fractional delay differential equations, Filomat, 2022, 36(17), 5707–5724. doi: 10.2298/FIL2217707V

    CrossRef Google Scholar

    [23] Y. Zhou, Attractivity for fractional evolution equations with almost sectorial operators, Fract. Calc. Appl. Anal., 2018, 21(3), 786–800. doi: 10.1515/fca-2018-0041

    CrossRef Google Scholar

    [24] Y. Zhou, Attractivity for fractional differential equations in Banach space, Appl. Math. Letters, 2018, 75, 1–6. doi: 10.1016/j.aml.2017.06.008

    CrossRef Google Scholar

    [25] Y. Zhou and J. W. He, A Cauchy problem for fractional evolution equations with Hilfer's fractional derivative on semi-infinite interval, Fract. Calc. Appl. Anal., 2022, 25, 924–961. doi: 10.1007/s13540-022-00057-9

    CrossRef Google Scholar

    [26] Y. Zhou, J. W. He, B. Ahmad and A. Alsaedi, Existence and attractivity for fractional evolution equations, Discrete Dyn. Nat. Soc., 2018, 1070713.

    Google Scholar

    [27] T. Zhu, Global attractivity for fractional differential equations of Riemann-Liouville type, Fract. Calc. Appl. Anal., 2023, 26, 2264–2280. doi: 10.1007/s13540-023-00187-8

    CrossRef Google Scholar

Article Metrics

Article views(52) PDF downloads(40) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint