Citation: | Yaqin Li, Yanqiong Lu. AMBROSETTI-PRODI TYPE RESULTS FOR DISCRETE MINKOWSKI-MEAN CURVATURE OPERATORS WITH REPULSIVE SINGULARITIES[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2726-2746. doi: 10.11948/20240502 |
In this work, we study an Ambrosetti-prodi type results for discrete Minkowski-mean curvature operators with repulsive singularities
$ \begin{align*} &\triangle\Big(\frac{\triangle u(t-1)}{\sqrt{1-(\triangle u(t-1))^{2}}}\Big)+f(u)\triangle u(t)+g(t,u (t))=s,\quad t\in[1,T]_{\mathbb{Z}},\nonumber\\ &u(0)=u(T),\quad \triangle u(0)=\triangle u(T), \end{align*} $
where $ f:(0,+\infty)\rightarrow \mathbb{R} $ is a continuous $ T $-periodic function, $ g:[1,T]_{\mathbb{Z}}\times(0,+\infty)\rightarrow \mathbb{R} $ is a continuous $ T $-periodic function with a repulsive singularity at the origin, and $ s\in \mathbb{R} $ is a parameter, $ T\geq2 $ is integer.
[1] | E. Amoroso, P. Candito and J. Mawhin, Existence of a priori bounded solutions for discrete two-point boundary value problems, J. Math. Anal. Appl., 2023, 519(2), 1–18. |
[2] | C. Bereanu, P. Jebelean and P. J. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal., 2013, 265(4), 644–659. doi: 10.1016/j.jfa.2013.04.006 |
[3] | C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular ϕ-Laplacian, J. Differ. Equ., 2007, 243(2), 536–557. doi: 10.1016/j.jde.2007.05.014 |
[4] | C. Bereanu and H. B. Thompson, Periodic solutions of second order nonlinear difference equations with discrete ϕ -Laplacian, J. Math. Anal. Appl., 2007, 330(2), 1002–1015. doi: 10.1016/j.jmaa.2006.07.104 |
[5] | A. Boscaggin and G. Feltrin, Positive periodic solutions to an indefinite Minkowski-curvatuer equation, J. Differ. Equ., 2020, 269(7), 5595–5645. doi: 10.1016/j.jde.2020.04.009 |
[6] | A. Boscaggin and G. Feltrin, Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight, Nonlinear Anal., 2020, 196, 111807–111820. doi: 10.1016/j.na.2020.111807 |
[7] | T. L. Chen, R. Y. Ma and Y. W. Liang, Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-Laplacian, J. Difference Equ. Appl., 2019, 25(1), 38–55. doi: 10.1080/10236198.2018.1554064 |
[8] | Z. B. Chen, C. Kong and C. Y. Xia, Multiple positive periodic solutions to Minkowski-curvature equations with a singularity of attractive type, Qual. Theory Dyn. Syst., 2022, 21(4), 1–16. |
[9] | I. Coelho, C. Corsato, F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 2012, 12(3), 621–638. doi: 10.1515/ans-2012-0310 |
[10] | C. Corsato, F. Obersnel, P. Omari and S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, J. Math. Anal. Appl., 2013, 405(3), 227–239. |
[11] | C. Fabry, J. Mawhin and M. N. Nkashma, A multiplicity result for peripdic solutions of forced nonlinear second order ordinary differential equations, Bull. Lond. Math. Soc., 1986, 18(2), 173–180. doi: 10.1112/blms/18.2.173 |
[12] | G. Feltrin, E. Sovrano and F. Zanolin, Periodic solutions to parameter-dapendent equations with a ϕ-Laplacian type operator, Nonlinear Differ Equ. Appl., 2019, 26(5), 38–65. doi: 10.1007/s00030-019-0585-3 |
[13] | A. Fonda and A. Sfecci, On a singular periodic Ambrosetti-Prodi problem, Nonlinear Anal., 2017, 149, 146–155. doi: 10.1016/j.na.2016.10.018 |
[14] | D. Gurban and P. Jebelean, Positive radial solutions for multiparameter Dirichlet systems with mean curvature operator in Minkowski space and Lane-Emden type nonlinearities, J. Differ. Equ., 2019, 266(9), 5377–5396. doi: 10.1016/j.jde.2018.10.030 |
[15] | R. Hakl and P. J. Torres, On periodic solutions of second-order differential equations with attractive-repulsive singularities, J. Differ. Equ., 2010, 248(1), 111–126. doi: 10.1016/j.jde.2009.07.008 |
[16] | R. Hakl, P. J. Torres and M. Zamora, Periodic solutions of singular second order differential equations: upper and lower functions, Nonlinear Anal., 2011, 74(18), 7078–7093. doi: 10.1016/j.na.2011.07.029 |
[17] | R. Hakl, P. J. Torres and M. Zamora, Periodic solutions of singular second order differential equations: The repulsive case, Topol. Methods Nonlinear Anal., 2012, 39(2), 199–220. |
[18] | R. Hakl and M. Zamora, Existence and uniqueness of a periodic solution to an indefinite attractive singular equation, Ann. Mat. Pura Appl., 2016, 195(3), 995–1009. doi: 10.1007/s10231-015-0501-3 |
[19] | P. Jebelean, C. Popa and C. Şerban, Numerical extremal solutions for a mixed problem with singular ϕ -Laplacian, NoDEA Nonlinear Differential Equations Appl., 2014, 21(2), 289–304. doi: 10.1007/s00030-013-0247-9 |
[20] | Y. Q. Lu and R. Y. Ma, Existence and multiplicity of solutions of second-order discrete Neumann problem with singular ϕ-Laplacian operator, Adv. Difference Equ., 2014, 227, 1–18. |
[21] | R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differ. Equ., 1998, 145(2), 367–393. doi: 10.1006/jdeq.1998.3425 |
[22] | E. Sovrano and F. Zanolin, Ambrosetti-Prodi periodic problem under local coercivity conditions, Adv. Nonlinear Stud., 2018, 18(1), 169–182. doi: 10.1515/ans-2017-6040 |
[23] | C. C. Tistell, Y. J. Liu and Z. H. Liu, Existence of solutions to discrete and continuous second-order boundary value problems via Lyapunov functions and a priori bounds, Electron. J. Qual. Theory Differ. Equ., 2019, 1(42), 1–11. |
[24] |
M. Xu and R. Y. Ma, Nonspurious solutions of the Dirichlet problem for the prescribed mean curvature spacelike equation in a Friedmann-Lema$\hat{i}$tre-Robertson-Walker spacetime, Rocky Mountain J. Math., 2023, 53(4), 1291–1311.
$\hat{i}$tre-Robertson-Walker spacetime" target="_blank">Google Scholar |
[25] | X. Yu and S. Lu, A multiplicity result for periodic solutions of Liénard equations with an attractive singularity, Appl. Math. Comput., 2019, 346, 183–192. |
[26] | X. C. Yu and S. P Lu, A singular periodic Ambrosetti-Prodi problem of Rayleigh equations without coercivity conditions, Commun. Contemp. Math., 2022, 24(5), 2150012–2150028. |
[27] | X. C. Yu, S. P. Lu and F. C. Kong, Existence and multiplicity of positive peridoic solutions to Minkowski-curvature equations without coercivity condition, J. Math. Anal. Appl., 2022, 507(2), 1–15. |
[28] | X. C. Yu, Y. L. Song, S. P. Lu and J. Godoy, On the positive periodic solutions of a class of Linard equations with repulsive singularities indegenerate case, J. Differ. Equ., 2023, 368, 1–25. |