2025 Volume 15 Issue 5
Article Contents

Yaqin Li, Yanqiong Lu. AMBROSETTI-PRODI TYPE RESULTS FOR DISCRETE MINKOWSKI-MEAN CURVATURE OPERATORS WITH REPULSIVE SINGULARITIES[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2726-2746. doi: 10.11948/20240502
Citation: Yaqin Li, Yanqiong Lu. AMBROSETTI-PRODI TYPE RESULTS FOR DISCRETE MINKOWSKI-MEAN CURVATURE OPERATORS WITH REPULSIVE SINGULARITIES[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2726-2746. doi: 10.11948/20240502

AMBROSETTI-PRODI TYPE RESULTS FOR DISCRETE MINKOWSKI-MEAN CURVATURE OPERATORS WITH REPULSIVE SINGULARITIES

  • Author Bio: Email: 18919454637@163.com(Y. Li)
  • Corresponding author: Email: luyq8610@126.com(Y. Lu)
  • Fund Project: Supported by National Natural Science Foundation of China (No. 12361040)
  • In this work, we study an Ambrosetti-prodi type results for discrete Minkowski-mean curvature operators with repulsive singularities

    $ \begin{align*} &\triangle\Big(\frac{\triangle u(t-1)}{\sqrt{1-(\triangle u(t-1))^{2}}}\Big)+f(u)\triangle u(t)+g(t,u (t))=s,\quad t\in[1,T]_{\mathbb{Z}},\nonumber\\ &u(0)=u(T),\quad \triangle u(0)=\triangle u(T), \end{align*} $

    where $ f:(0,+\infty)\rightarrow \mathbb{R} $ is a continuous $ T $-periodic function, $ g:[1,T]_{\mathbb{Z}}\times(0,+\infty)\rightarrow \mathbb{R} $ is a continuous $ T $-periodic function with a repulsive singularity at the origin, and $ s\in \mathbb{R} $ is a parameter, $ T\geq2 $ is integer.

    MSC: 34B08, 34C25
  • 加载中
  • [1] E. Amoroso, P. Candito and J. Mawhin, Existence of a priori bounded solutions for discrete two-point boundary value problems, J. Math. Anal. Appl., 2023, 519(2), 1–18.

    Google Scholar

    [2] C. Bereanu, P. Jebelean and P. J. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal., 2013, 265(4), 644–659. doi: 10.1016/j.jfa.2013.04.006

    CrossRef Google Scholar

    [3] C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular ϕ-Laplacian, J. Differ. Equ., 2007, 243(2), 536–557. doi: 10.1016/j.jde.2007.05.014

    CrossRef Google Scholar

    [4] C. Bereanu and H. B. Thompson, Periodic solutions of second order nonlinear difference equations with discrete ϕ -Laplacian, J. Math. Anal. Appl., 2007, 330(2), 1002–1015. doi: 10.1016/j.jmaa.2006.07.104

    CrossRef Google Scholar

    [5] A. Boscaggin and G. Feltrin, Positive periodic solutions to an indefinite Minkowski-curvatuer equation, J. Differ. Equ., 2020, 269(7), 5595–5645. doi: 10.1016/j.jde.2020.04.009

    CrossRef Google Scholar

    [6] A. Boscaggin and G. Feltrin, Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight, Nonlinear Anal., 2020, 196, 111807–111820. doi: 10.1016/j.na.2020.111807

    CrossRef Google Scholar

    [7] T. L. Chen, R. Y. Ma and Y. W. Liang, Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-Laplacian, J. Difference Equ. Appl., 2019, 25(1), 38–55. doi: 10.1080/10236198.2018.1554064

    CrossRef Google Scholar

    [8] Z. B. Chen, C. Kong and C. Y. Xia, Multiple positive periodic solutions to Minkowski-curvature equations with a singularity of attractive type, Qual. Theory Dyn. Syst., 2022, 21(4), 1–16.

    Google Scholar

    [9] I. Coelho, C. Corsato, F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 2012, 12(3), 621–638. doi: 10.1515/ans-2012-0310

    CrossRef Google Scholar

    [10] C. Corsato, F. Obersnel, P. Omari and S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, J. Math. Anal. Appl., 2013, 405(3), 227–239.

    Google Scholar

    [11] C. Fabry, J. Mawhin and M. N. Nkashma, A multiplicity result for peripdic solutions of forced nonlinear second order ordinary differential equations, Bull. Lond. Math. Soc., 1986, 18(2), 173–180. doi: 10.1112/blms/18.2.173

    CrossRef Google Scholar

    [12] G. Feltrin, E. Sovrano and F. Zanolin, Periodic solutions to parameter-dapendent equations with a ϕ-Laplacian type operator, Nonlinear Differ Equ. Appl., 2019, 26(5), 38–65. doi: 10.1007/s00030-019-0585-3

    CrossRef Google Scholar

    [13] A. Fonda and A. Sfecci, On a singular periodic Ambrosetti-Prodi problem, Nonlinear Anal., 2017, 149, 146–155. doi: 10.1016/j.na.2016.10.018

    CrossRef Google Scholar

    [14] D. Gurban and P. Jebelean, Positive radial solutions for multiparameter Dirichlet systems with mean curvature operator in Minkowski space and Lane-Emden type nonlinearities, J. Differ. Equ., 2019, 266(9), 5377–5396. doi: 10.1016/j.jde.2018.10.030

    CrossRef Google Scholar

    [15] R. Hakl and P. J. Torres, On periodic solutions of second-order differential equations with attractive-repulsive singularities, J. Differ. Equ., 2010, 248(1), 111–126. doi: 10.1016/j.jde.2009.07.008

    CrossRef Google Scholar

    [16] R. Hakl, P. J. Torres and M. Zamora, Periodic solutions of singular second order differential equations: upper and lower functions, Nonlinear Anal., 2011, 74(18), 7078–7093. doi: 10.1016/j.na.2011.07.029

    CrossRef Google Scholar

    [17] R. Hakl, P. J. Torres and M. Zamora, Periodic solutions of singular second order differential equations: The repulsive case, Topol. Methods Nonlinear Anal., 2012, 39(2), 199–220.

    Google Scholar

    [18] R. Hakl and M. Zamora, Existence and uniqueness of a periodic solution to an indefinite attractive singular equation, Ann. Mat. Pura Appl., 2016, 195(3), 995–1009. doi: 10.1007/s10231-015-0501-3

    CrossRef Google Scholar

    [19] P. Jebelean, C. Popa and C. Şerban, Numerical extremal solutions for a mixed problem with singular ϕ -Laplacian, NoDEA Nonlinear Differential Equations Appl., 2014, 21(2), 289–304. doi: 10.1007/s00030-013-0247-9

    CrossRef Google Scholar

    [20] Y. Q. Lu and R. Y. Ma, Existence and multiplicity of solutions of second-order discrete Neumann problem with singular ϕ-Laplacian operator, Adv. Difference Equ., 2014, 227, 1–18.

    Google Scholar

    [21] R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differ. Equ., 1998, 145(2), 367–393. doi: 10.1006/jdeq.1998.3425

    CrossRef Google Scholar

    [22] E. Sovrano and F. Zanolin, Ambrosetti-Prodi periodic problem under local coercivity conditions, Adv. Nonlinear Stud., 2018, 18(1), 169–182. doi: 10.1515/ans-2017-6040

    CrossRef Google Scholar

    [23] C. C. Tistell, Y. J. Liu and Z. H. Liu, Existence of solutions to discrete and continuous second-order boundary value problems via Lyapunov functions and a priori bounds, Electron. J. Qual. Theory Differ. Equ., 2019, 1(42), 1–11.

    Google Scholar

    [24] M. Xu and R. Y. Ma, Nonspurious solutions of the Dirichlet problem for the prescribed mean curvature spacelike equation in a Friedmann-Lema$\hat{i}$tre-Robertson-Walker spacetime, Rocky Mountain J. Math., 2023, 53(4), 1291–1311.

    $\hat{i}$tre-Robertson-Walker spacetime" target="_blank">Google Scholar

    [25] X. Yu and S. Lu, A multiplicity result for periodic solutions of Liénard equations with an attractive singularity, Appl. Math. Comput., 2019, 346, 183–192.

    Google Scholar

    [26] X. C. Yu and S. P Lu, A singular periodic Ambrosetti-Prodi problem of Rayleigh equations without coercivity conditions, Commun. Contemp. Math., 2022, 24(5), 2150012–2150028.

    Google Scholar

    [27] X. C. Yu, S. P. Lu and F. C. Kong, Existence and multiplicity of positive peridoic solutions to Minkowski-curvature equations without coercivity condition, J. Math. Anal. Appl., 2022, 507(2), 1–15.

    Google Scholar

    [28] X. C. Yu, Y. L. Song, S. P. Lu and J. Godoy, On the positive periodic solutions of a class of Linard equations with repulsive singularities indegenerate case, J. Differ. Equ., 2023, 368, 1–25.

    Google Scholar

Article Metrics

Article views(54) PDF downloads(34) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint