2025 Volume 15 Issue 5
Article Contents

Li-Tao Zhang, Guang-Xu Zhu. A NEW PARAMETERIZED MATRIX SPLITTING PRECONDITIONER FOR THE SADDLE POINT PROBLEMS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2747-2760. doi: 10.11948/20240515
Citation: Li-Tao Zhang, Guang-Xu Zhu. A NEW PARAMETERIZED MATRIX SPLITTING PRECONDITIONER FOR THE SADDLE POINT PROBLEMS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2747-2760. doi: 10.11948/20240515

A NEW PARAMETERIZED MATRIX SPLITTING PRECONDITIONER FOR THE SADDLE POINT PROBLEMS

  • Author Bio: Email: 18749538109@163.com (G.-X. Zhu)
  • Corresponding author: Email: litaozhang@163.com(L.-T. Zhang) 
  • Fund Project: This research of this author is supported by the National Natural Science Foundation of China (11226337, 11501525, 12401655), Basic Research Projects of Key Scientific Research Projects Plan in Henan Higher Education Institutions (25ZX013), Scientific Research Team Plan of Zhengzhou University of Aeronautics (23ZHTD01003), Key Scientific Research Projects Plan in Henan Higher Education Institutions (24A170031), Henan science and technology research program (212102110206, 222102110404, 202102310942), Henan College Students' innovation training program (s202110485045) and college students' innovation training program (2021-70), Key projects of colleges and universities in Henan Province (22A880022), Henan Province General Project (242300421373), Scientific and Technological Project in Henan Province (242102210114), Henan Province Higher Education Teaching Reform Research and Practice Project (2024SJGLX0150, 2024SJGLX0410)
  • Recently, Zheng and Lu [International Journal of Computer Mathematics, 96(1): 1-17, DOI: 10.1080/00207160.2017.1420179] constructed a parameterized matrix splitting (PMS) preconditioner for the large sparse saddle point problems, and gave the corresponding theoretical analysis and numerical experiments. In this paper, based on the parameterized matrix splitting, we generalize the PMS algorithms and further present the new parameterized matrix splitting (NPMS) preconditioner for the saddle point problems. Moreover, by similar theoretical analysis, we analyze the convergence conditions of the corresponding matrix splitting iteration methods and preconditioning properties of the NPMS preconditioned saddle point matrices. Finally, one example is provided to confirm the effectiveness.

    MSC: 65F10, 65F15, 65F50
  • 加载中
  • [1] M. Andreas, B. Eberhard and F. Florian, Schur preconditioning of the Stokes equations in channel-dominated domains, Comput. Methods Appl. Mech. Eng., 2022, 398.

    Google Scholar

    [2] M. Arioli, I. S. Duff and P. P. M. de Rijk, On the augmented system approach to sparse least-squares problems, Numer. Math., 1989, 55, 667–684. doi: 10.1007/BF01389335

    CrossRef Google Scholar

    [3] Z.-Z. Bai, Several splittings for non-Hermitian linear systems, Science in China, Series A: Math., 2008, 51, 1339–1348. doi: 10.1007/s11425-008-0106-z

    CrossRef Google Scholar

    [4] Z.-Z. Bai, Optimal parameters in the HSS-like methods for saddle-point problems, Numer. Linear Algebra Appl., 2009, 16, 447–479. doi: 10.1002/nla.626

    CrossRef Google Scholar

    [5] Z.-Z. Bai, M. Benzi and F. Chen, Modified HSS iteration methods for a class of complex symmetric linear systems, Comput., 2010, 87(3–4), 93–111.

    Google Scholar

    [6] Z.-Z. Bai, G. H. Golub and C.-K. Li, Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices, SIAM J. Sci. Comput., 2006, 28, 583–603. doi: 10.1137/050623644

    CrossRef Google Scholar

    [7] Z.-Z. Bai, G. H. Golub, L.-Z. Lu, et al., Block-Triangular and skew-Hermitian splitting methods for positive definite linear systems, SIAM J. Sci. Comput., 2005, 26, 844–863. doi: 10.1137/S1064827503428114

    CrossRef Google Scholar

    [8] Z.-Z. Bai, G. H. Golub and K. N. Michael, On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, Linear Algebra Appl., 2008, 428, 413–440. doi: 10.1016/j.laa.2007.02.018

    CrossRef Google Scholar

    [9] Z.-Z. Bai, G. H. Golub and M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. A., 2003, 24, 603–626. doi: 10.1137/S0895479801395458

    CrossRef Google Scholar

    [10] Z.-Z. Bai, G. H. Golub and M. K. Ng, On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iteration, SIAM J. Matrix Anal. A., 2003, 24(2), 603–626.

    Google Scholar

    [11] Z.-Z. Bai, G. H. Golub and M. K. Ng, On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl., 2007, 14, 319–335. doi: 10.1002/nla.517

    CrossRef Google Scholar

    [12] Z.-Z. Bai, G. H. Golub and J.-Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 2004, 98, 1–32. doi: 10.1007/s00211-004-0521-1

    CrossRef Google Scholar

    [13] Z.-Z. Bai, G. H. Golub and J.-Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer Math., 2004, 98(1), 1–32. doi: 10.1007/s00211-004-0521-1

    CrossRef Google Scholar

    [14] Z.-Z. Bai and M. K. Ng, On inexact preconditioners for nonsymmetric matrices, SIAM J. Sci. Comput., 2005, 26, 1710–1724. doi: 10.1137/040604091

    CrossRef Google Scholar

    [15] Z.-Z. Bai, M. K. Ng and Z.-Q. Wang, Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix Anal. Appl., 2009, 31, 410–433. doi: 10.1137/080720243

    CrossRef Google Scholar

    [16] Z.-Z. Bai, B. N. Parlett and Z. Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 2005, 102, 1–38. doi: 10.1007/s00211-005-0643-0

    CrossRef Google Scholar

    [17] Z.-Z. Bai and Z.-Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 2008, 428, 2900–2932. doi: 10.1016/j.laa.2008.01.018

    CrossRef Google Scholar

    [18] Z.-Z. Bai and X. Yang, On HSS-based iteration methods for weakly nonlinear systems, Appl. Numer. Math., 2009, 59, 2923–2936. doi: 10.1016/j.apnum.2009.06.005

    CrossRef Google Scholar

    [19] Z.-Z. Bai, J.-F. Yin and Y.-F. Su, A shift-splitting preconditioner for non-Hermitian positive definite matrices, J. Comput. Math., 2006, 24, 539–552.

    Google Scholar

    [20] Y. Cao, A general class of shift-splitting preconditioners for non-Hermitian saddle point problems with applications to time-harmonic eddy current models, Comput. Math. Appl., 2018, 77(4), 1124–1143.

    Google Scholar

    [21] Y. Cao, J. Du and Q. Niu, Shift-splitting preconditioners for saddle point problems, J. Comput. Appl. Math., 2014, 272, 239–250. doi: 10.1016/j.cam.2014.05.017

    CrossRef Google Scholar

    [22] Y. Cao, L.-Q. Yao and M.-Q. Jiang, A modified dimensional split preconditioner for generalized saddle point problems, J. Comput. Appl. Math., 2013, 250, 70–82. doi: 10.1016/j.cam.2013.02.017

    CrossRef Google Scholar

    [23] Y. Cao, L.-Q. Yao, M.-Q. Jiang, et al., A relaxed HSS preconditioner for saddle point problems from meshfree discretization, J. Comput. Math., 2013, 31, 398–421. doi: 10.4208/jcm.1304-m4209

    CrossRef Google Scholar

    [24] C.-R. Chen and C.-F. Ma, A generalized shift-splitting preconditioner for saddle point problems, Appl. Math. Lett., 2015, 43, 49–55. doi: 10.1016/j.aml.2014.12.001

    CrossRef Google Scholar

    [25] F. Chen and Y.-L. Jiang, A generalization of the inexact parameterized Uzawa methods for saddle point problems, Appl. Math. Comput., 2008, 206, 765–771.

    Google Scholar

    [26] M. T. Darvishi and P. Hessari, Symmetric SOR method for augmented systems, Appl. Math. Comput., 2006, 183, 409–415.

    Google Scholar

    [27] H. Elman and G. H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal., 1994, 31, 1645–1661.

    Google Scholar

    [28] H. Elman and D. Silvester, Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations, SIAM J. Sci. Comput., 1996, 17, 33–46.

    Google Scholar

    [29] B. B. Fariba, H. Masoud and B. Luca, Two block preconditioners for a class of double saddle point linear systems, Appl. Numer. Math., 2023, 190, 155–167.

    Google Scholar

    [30] B. Fischer, A. Ramage, D. J. Silvester, et al., Minimum residual methods for augmented systems, BIT, 1998, 38, 527–543.

    Google Scholar

    [31] B. Fleurianne, B. Daniele and G. Lucia, Approximation of the Maxwell eigenvalue problem in a least-squares setting, Comput. Math. Appl., 2023, 148, 302–312.

    Google Scholar

    [32] G. H. Golub, X. Wu and J.-Y. Yuan, SOR-like methods for augmented systems, BIT Numer. Math., 2001, 55, 71–85.

    Google Scholar

    [33] M.-Q. Jiang and Y. Cao, On local Hermitian skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 2009, 231, 973–982.

    Google Scholar

    [34] X.-F. Peng and W. Li, On unsymmetric block overrelaxation-type methods for saddle point, Appl. Math. Comput., 2008, 203(2), 660–671.

    Google Scholar

    [35] C. H. Santos, B. P. B. Silva and J.-Y. Yuan, Block SOR methods for rank deficient least squares problems, J. Comput. Appl. Math., 1998, 100, 1–9.

    Google Scholar

    [36] X. Shao, H. Shen and C. Li, The generalized SOR-like method for the augmented systems, Int. J. Inf. Syst. Sci., 2006, 2, 92–98.

    Google Scholar

    [37] H. A. Van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge: Cambridge University Press., 2003.

    Google Scholar

    [38] L. Wang and Z.-Z. Bai, Convergence conditions for splitting iteration methods for non-Hermitian linear systems, Linear Algebra Appl., 2008, 428, 453–468.

    Google Scholar

    [39] J.-C. Wei and C.-F Ma, A modified RBULT preconditioner for generalized saddle point problems from the hydrodynamic equations, Appl. Math. Comput., 2024, 478, 128826.

    Google Scholar

    [40] T. Wei and L.-T. Zhang, A new generalized shift-splitting method for nonsymmetric saddle point problems, Adv. Mech. Eng., 2022, 14, 1–11.

    Google Scholar

    [41] S. Wright, Stability of augmented system factorizations in interior-point methods, SIAM J. Matrix Anal. Appl., 1997, 18, 191–222.

    Google Scholar

    [42] S.-L. Wu, T.-Z. Huang and X.-L. Zhao, A modified SSOR iterative method for augmented systems, J. Comput. Appl. Math., 2009, 228(1), 424–433.

    Google Scholar

    [43] D. M. Young, Iterative Solution for Large Systems, Academic Press, New York., 1971.

    Google Scholar

    [44] J.-Y. Yuan, Numerical methods for generalized least squares problems, J. Comput. Appl. Math., 1996, 66, 571–584.

    Google Scholar

    [45] J.-Y. Yuan and A. N. Iusem, Preconditioned conjugate gradient method for generalized least squares problems, J. Comput. Appl. Math., 1996, 71, 287–297.

    Google Scholar

    [46] G.-F. Zhang and Q.-H. Lu, On generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math., 2008, 1(15), 51–58.

    Google Scholar

    [47] L.-T. Zhang, A new preconditioner for generalized saddle matrices with highly singular (1,1) blocks, Int. J. Comput. Math., 2014, 91(9), 2091–2101.

    Google Scholar

    [48] L.-T. Zhang, Convergence of Newton-relaxed non-stationary multisplitting multi-parameters methods for nonlinear equations, J. Internet Technol., 2019, 20(3), 817–826.

    Google Scholar

    [49] L.-T. Zhang, A new preconditioner for generalized saddle matrices with highly singular (1,1) blocks, Int. J. Comput. Math., 2014, 91, 2091–2101.

    Google Scholar

    [50] L.-T. Zhang, T.-Z. Huang, S.-H. Cheng, et al., Convergence of a generalized MSSOR method for augmented systems, J. Comput. Appl. Math., 2012, 236, 1841–1850.

    Google Scholar

    [51] L.-T. Zhang, D.-D. Jiang, X.-Y. Zuo, et al., Relaxed modulus-based synchronous multisplitting multi-parameter methods for linear complementarity problems, Mob. Netw. Appl., 2021, 26, 745–754.

    Google Scholar

    [52] L.-T. Zhang, D.-D. Jiang, X.-Y. Zuo, et al., Weaker convergence of global relaxed multisplitting USAOR methods for an H-matrix, Mob. Netw. Appl., 2021, 26, 755–765.

    Google Scholar

    [53] L.-T. Zhang and L.-M. Shi, An improved generalized parameterized inexact Uzawa method for singular saddle point problems, J. Comput. Anal. Appl., 2017, 23, 671–683.

    Google Scholar

    [54] L.-T. Zhang and Y.-F. Zhang, A modified variant of HSS preconditioner for generalized saddle point problems, Adv. Mech. Eng., 2022, 14, 1–15.

    Google Scholar

    [55] B. Zheng, Z.-Z. Bai and X. Yang, On semi-convergence of parameterized Uzawa methods for singular saddle point problems, Linear Algebra Appl., 2009, 431, 808–817.

    Google Scholar

    [56] Q.-Q. Zheng and L.-Z. Lu, On parameterized matrix splitting preconditioner for the saddle point problems, Int. J. Comput. Math., 2019, 96(1), 1–17.

    Google Scholar

    [57] Q.-Q. Zheng and L.-Z. Lu, Extended shift-splitting preconditioners for saddle point problems, J. Comput. Appl. Math., 2017, 313, 70–81.

    Google Scholar

    [58] Q.-Q. Zheng and C.-F. Ma, A new SOR-like method for the saddle point problems, Appl. Math. Comput., 2014, 233, 421–429.

    Google Scholar

    [59] S.-W. Zhou, A.-L. Yang, Y. Dou, et al., The modified shift-splitting preconditioners for nonsymmetric saddle-point problems, Appl. Math. Lett., 2016, 59, 109–114.

    Google Scholar

Figures(4)  /  Tables(2)

Article Metrics

Article views(55) PDF downloads(26) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint