Citation: | Li-Tao Zhang, Guang-Xu Zhu. A NEW PARAMETERIZED MATRIX SPLITTING PRECONDITIONER FOR THE SADDLE POINT PROBLEMS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2747-2760. doi: 10.11948/20240515 |
Recently, Zheng and Lu [International Journal of Computer Mathematics, 96(1): 1-17, DOI:
[1] | M. Andreas, B. Eberhard and F. Florian, Schur preconditioning of the Stokes equations in channel-dominated domains, Comput. Methods Appl. Mech. Eng., 2022, 398. |
[2] | M. Arioli, I. S. Duff and P. P. M. de Rijk, On the augmented system approach to sparse least-squares problems, Numer. Math., 1989, 55, 667–684. doi: 10.1007/BF01389335 |
[3] | Z.-Z. Bai, Several splittings for non-Hermitian linear systems, Science in China, Series A: Math., 2008, 51, 1339–1348. doi: 10.1007/s11425-008-0106-z |
[4] | Z.-Z. Bai, Optimal parameters in the HSS-like methods for saddle-point problems, Numer. Linear Algebra Appl., 2009, 16, 447–479. doi: 10.1002/nla.626 |
[5] | Z.-Z. Bai, M. Benzi and F. Chen, Modified HSS iteration methods for a class of complex symmetric linear systems, Comput., 2010, 87(3–4), 93–111. |
[6] | Z.-Z. Bai, G. H. Golub and C.-K. Li, Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices, SIAM J. Sci. Comput., 2006, 28, 583–603. doi: 10.1137/050623644 |
[7] | Z.-Z. Bai, G. H. Golub, L.-Z. Lu, et al., Block-Triangular and skew-Hermitian splitting methods for positive definite linear systems, SIAM J. Sci. Comput., 2005, 26, 844–863. doi: 10.1137/S1064827503428114 |
[8] | Z.-Z. Bai, G. H. Golub and K. N. Michael, On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, Linear Algebra Appl., 2008, 428, 413–440. doi: 10.1016/j.laa.2007.02.018 |
[9] | Z.-Z. Bai, G. H. Golub and M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. A., 2003, 24, 603–626. doi: 10.1137/S0895479801395458 |
[10] | Z.-Z. Bai, G. H. Golub and M. K. Ng, On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iteration, SIAM J. Matrix Anal. A., 2003, 24(2), 603–626. |
[11] | Z.-Z. Bai, G. H. Golub and M. K. Ng, On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl., 2007, 14, 319–335. doi: 10.1002/nla.517 |
[12] | Z.-Z. Bai, G. H. Golub and J.-Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 2004, 98, 1–32. doi: 10.1007/s00211-004-0521-1 |
[13] | Z.-Z. Bai, G. H. Golub and J.-Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer Math., 2004, 98(1), 1–32. doi: 10.1007/s00211-004-0521-1 |
[14] | Z.-Z. Bai and M. K. Ng, On inexact preconditioners for nonsymmetric matrices, SIAM J. Sci. Comput., 2005, 26, 1710–1724. doi: 10.1137/040604091 |
[15] | Z.-Z. Bai, M. K. Ng and Z.-Q. Wang, Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix Anal. Appl., 2009, 31, 410–433. doi: 10.1137/080720243 |
[16] | Z.-Z. Bai, B. N. Parlett and Z. Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 2005, 102, 1–38. doi: 10.1007/s00211-005-0643-0 |
[17] | Z.-Z. Bai and Z.-Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 2008, 428, 2900–2932. doi: 10.1016/j.laa.2008.01.018 |
[18] | Z.-Z. Bai and X. Yang, On HSS-based iteration methods for weakly nonlinear systems, Appl. Numer. Math., 2009, 59, 2923–2936. doi: 10.1016/j.apnum.2009.06.005 |
[19] | Z.-Z. Bai, J.-F. Yin and Y.-F. Su, A shift-splitting preconditioner for non-Hermitian positive definite matrices, J. Comput. Math., 2006, 24, 539–552. |
[20] | Y. Cao, A general class of shift-splitting preconditioners for non-Hermitian saddle point problems with applications to time-harmonic eddy current models, Comput. Math. Appl., 2018, 77(4), 1124–1143. |
[21] | Y. Cao, J. Du and Q. Niu, Shift-splitting preconditioners for saddle point problems, J. Comput. Appl. Math., 2014, 272, 239–250. doi: 10.1016/j.cam.2014.05.017 |
[22] | Y. Cao, L.-Q. Yao and M.-Q. Jiang, A modified dimensional split preconditioner for generalized saddle point problems, J. Comput. Appl. Math., 2013, 250, 70–82. doi: 10.1016/j.cam.2013.02.017 |
[23] | Y. Cao, L.-Q. Yao, M.-Q. Jiang, et al., A relaxed HSS preconditioner for saddle point problems from meshfree discretization, J. Comput. Math., 2013, 31, 398–421. doi: 10.4208/jcm.1304-m4209 |
[24] | C.-R. Chen and C.-F. Ma, A generalized shift-splitting preconditioner for saddle point problems, Appl. Math. Lett., 2015, 43, 49–55. doi: 10.1016/j.aml.2014.12.001 |
[25] | F. Chen and Y.-L. Jiang, A generalization of the inexact parameterized Uzawa methods for saddle point problems, Appl. Math. Comput., 2008, 206, 765–771. |
[26] | M. T. Darvishi and P. Hessari, Symmetric SOR method for augmented systems, Appl. Math. Comput., 2006, 183, 409–415. |
[27] | H. Elman and G. H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal., 1994, 31, 1645–1661. |
[28] | H. Elman and D. Silvester, Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations, SIAM J. Sci. Comput., 1996, 17, 33–46. |
[29] | B. B. Fariba, H. Masoud and B. Luca, Two block preconditioners for a class of double saddle point linear systems, Appl. Numer. Math., 2023, 190, 155–167. |
[30] | B. Fischer, A. Ramage, D. J. Silvester, et al., Minimum residual methods for augmented systems, BIT, 1998, 38, 527–543. |
[31] | B. Fleurianne, B. Daniele and G. Lucia, Approximation of the Maxwell eigenvalue problem in a least-squares setting, Comput. Math. Appl., 2023, 148, 302–312. |
[32] | G. H. Golub, X. Wu and J.-Y. Yuan, SOR-like methods for augmented systems, BIT Numer. Math., 2001, 55, 71–85. |
[33] | M.-Q. Jiang and Y. Cao, On local Hermitian skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 2009, 231, 973–982. |
[34] | X.-F. Peng and W. Li, On unsymmetric block overrelaxation-type methods for saddle point, Appl. Math. Comput., 2008, 203(2), 660–671. |
[35] | C. H. Santos, B. P. B. Silva and J.-Y. Yuan, Block SOR methods for rank deficient least squares problems, J. Comput. Appl. Math., 1998, 100, 1–9. |
[36] | X. Shao, H. Shen and C. Li, The generalized SOR-like method for the augmented systems, Int. J. Inf. Syst. Sci., 2006, 2, 92–98. |
[37] | H. A. Van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge: Cambridge University Press., 2003. |
[38] | L. Wang and Z.-Z. Bai, Convergence conditions for splitting iteration methods for non-Hermitian linear systems, Linear Algebra Appl., 2008, 428, 453–468. |
[39] | J.-C. Wei and C.-F Ma, A modified RBULT preconditioner for generalized saddle point problems from the hydrodynamic equations, Appl. Math. Comput., 2024, 478, 128826. |
[40] | T. Wei and L.-T. Zhang, A new generalized shift-splitting method for nonsymmetric saddle point problems, Adv. Mech. Eng., 2022, 14, 1–11. |
[41] | S. Wright, Stability of augmented system factorizations in interior-point methods, SIAM J. Matrix Anal. Appl., 1997, 18, 191–222. |
[42] | S.-L. Wu, T.-Z. Huang and X.-L. Zhao, A modified SSOR iterative method for augmented systems, J. Comput. Appl. Math., 2009, 228(1), 424–433. |
[43] | D. M. Young, Iterative Solution for Large Systems, Academic Press, New York., 1971. |
[44] | J.-Y. Yuan, Numerical methods for generalized least squares problems, J. Comput. Appl. Math., 1996, 66, 571–584. |
[45] | J.-Y. Yuan and A. N. Iusem, Preconditioned conjugate gradient method for generalized least squares problems, J. Comput. Appl. Math., 1996, 71, 287–297. |
[46] | G.-F. Zhang and Q.-H. Lu, On generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math., 2008, 1(15), 51–58. |
[47] | L.-T. Zhang, A new preconditioner for generalized saddle matrices with highly singular (1,1) blocks, Int. J. Comput. Math., 2014, 91(9), 2091–2101. |
[48] | L.-T. Zhang, Convergence of Newton-relaxed non-stationary multisplitting multi-parameters methods for nonlinear equations, J. Internet Technol., 2019, 20(3), 817–826. |
[49] | L.-T. Zhang, A new preconditioner for generalized saddle matrices with highly singular (1,1) blocks, Int. J. Comput. Math., 2014, 91, 2091–2101. |
[50] | L.-T. Zhang, T.-Z. Huang, S.-H. Cheng, et al., Convergence of a generalized MSSOR method for augmented systems, J. Comput. Appl. Math., 2012, 236, 1841–1850. |
[51] | L.-T. Zhang, D.-D. Jiang, X.-Y. Zuo, et al., Relaxed modulus-based synchronous multisplitting multi-parameter methods for linear complementarity problems, Mob. Netw. Appl., 2021, 26, 745–754. |
[52] | L.-T. Zhang, D.-D. Jiang, X.-Y. Zuo, et al., Weaker convergence of global relaxed multisplitting USAOR methods for an H-matrix, Mob. Netw. Appl., 2021, 26, 755–765. |
[53] | L.-T. Zhang and L.-M. Shi, An improved generalized parameterized inexact Uzawa method for singular saddle point problems, J. Comput. Anal. Appl., 2017, 23, 671–683. |
[54] | L.-T. Zhang and Y.-F. Zhang, A modified variant of HSS preconditioner for generalized saddle point problems, Adv. Mech. Eng., 2022, 14, 1–15. |
[55] | B. Zheng, Z.-Z. Bai and X. Yang, On semi-convergence of parameterized Uzawa methods for singular saddle point problems, Linear Algebra Appl., 2009, 431, 808–817. |
[56] | Q.-Q. Zheng and L.-Z. Lu, On parameterized matrix splitting preconditioner for the saddle point problems, Int. J. Comput. Math., 2019, 96(1), 1–17. |
[57] | Q.-Q. Zheng and L.-Z. Lu, Extended shift-splitting preconditioners for saddle point problems, J. Comput. Appl. Math., 2017, 313, 70–81. |
[58] | Q.-Q. Zheng and C.-F. Ma, A new SOR-like method for the saddle point problems, Appl. Math. Comput., 2014, 233, 421–429. |
[59] | S.-W. Zhou, A.-L. Yang, Y. Dou, et al., The modified shift-splitting preconditioners for nonsymmetric saddle-point problems, Appl. Math. Lett., 2016, 59, 109–114. |
A uniform mesh with
The eigenvalue distribution for the NPMS iteration matrix
The eigenvalue distribution for the NPMS iteration matrix
The eigenvalue distribution for the NPMS iteration matrix